Cargando…

DRGAN: Dense Residual Generative Adversarial Network for Image Enhancement in an Underwater Autonomous Driving Device

Underwater autonomous driving devices, such as autonomous underwater vehicles (AUVs), rely on visual sensors, but visual images tend to produce color aberrations and a high turbidity due to the scattering and absorption of underwater light. To address these issues, we propose the Dense Residual Gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Jin, Li, Hui, Zhang, Bin, Lin, Sen, Xing, Xiaoshuang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575376/
https://www.ncbi.nlm.nih.gov/pubmed/37837125
http://dx.doi.org/10.3390/s23198297
Descripción
Sumario:Underwater autonomous driving devices, such as autonomous underwater vehicles (AUVs), rely on visual sensors, but visual images tend to produce color aberrations and a high turbidity due to the scattering and absorption of underwater light. To address these issues, we propose the Dense Residual Generative Adversarial Network (DRGAN) for underwater image enhancement. Firstly, we adopt a multi-scale feature extraction module to obtain a range of information and increase the receptive field. Secondly, a dense residual block is proposed, to realize the interaction of image features and ensure stable connections in the feature information. Multiple dense residual modules are connected from beginning to end to form a cyclic dense residual network, producing a clear image. Finally, the stability of the network is improved via adjustment to the training with multiple loss functions. Experiments were conducted using the RUIE and Underwater ImageNet datasets. The experimental results show that our proposed DRGAN can remove high turbidity from underwater images and achieve color equalization better than other methods.