Cargando…
DRGAN: Dense Residual Generative Adversarial Network for Image Enhancement in an Underwater Autonomous Driving Device
Underwater autonomous driving devices, such as autonomous underwater vehicles (AUVs), rely on visual sensors, but visual images tend to produce color aberrations and a high turbidity due to the scattering and absorption of underwater light. To address these issues, we propose the Dense Residual Gene...
Autores principales: | Qian, Jin, Li, Hui, Zhang, Bin, Lin, Sen, Xing, Xiaoshuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575376/ https://www.ncbi.nlm.nih.gov/pubmed/37837125 http://dx.doi.org/10.3390/s23198297 |
Ejemplares similares
-
Deep Supervised Residual Dense Network for Underwater Image Enhancement
por: Han, Yanling, et al.
Publicado: (2021) -
DVDR-SRGAN: Differential Value Dense Residual Super-Resolution Generative Adversarial Network
por: Qu, Hang, et al.
Publicado: (2023) -
An Underwater Image Enhancement Method for a Preprocessing Framework Based on Generative Adversarial Network
por: Jiang, Xiao, et al.
Publicado: (2023) -
Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss
por: Zhang, Lun, et al.
Publicado: (2022) -
A Novel DenseNet Generative Adversarial Network for Heterogenous Low-Light Image Enhancement
por: Zhang, Jingsi, et al.
Publicado: (2021)