Cargando…

A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7

In the viticulture sector, robots are being employed more frequently to increase productivity and accuracy in operations such as vineyard mapping, pruning, and harvesting, especially in locations where human labor is in short supply or expensive. This paper presents the development of an algorithm f...

Descripción completa

Detalles Bibliográficos
Autores principales: Badeka, Eftichia, Karapatzak, Eleftherios, Karampatea, Aikaterini, Bouloumpasi, Elisavet, Kalathas, Ioannis, Lytridis, Chris, Tziolas, Emmanouil, Tsakalidou, Viktoria Nikoleta, Kaburlasos, Vassilis G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575379/
https://www.ncbi.nlm.nih.gov/pubmed/37836956
http://dx.doi.org/10.3390/s23198126
_version_ 1785120908387549184
author Badeka, Eftichia
Karapatzak, Eleftherios
Karampatea, Aikaterini
Bouloumpasi, Elisavet
Kalathas, Ioannis
Lytridis, Chris
Tziolas, Emmanouil
Tsakalidou, Viktoria Nikoleta
Kaburlasos, Vassilis G.
author_facet Badeka, Eftichia
Karapatzak, Eleftherios
Karampatea, Aikaterini
Bouloumpasi, Elisavet
Kalathas, Ioannis
Lytridis, Chris
Tziolas, Emmanouil
Tsakalidou, Viktoria Nikoleta
Kaburlasos, Vassilis G.
author_sort Badeka, Eftichia
collection PubMed
description In the viticulture sector, robots are being employed more frequently to increase productivity and accuracy in operations such as vineyard mapping, pruning, and harvesting, especially in locations where human labor is in short supply or expensive. This paper presents the development of an algorithm for grape maturity estimation in the framework of vineyard management. An object detection algorithm is proposed based on You Only Look Once (YOLO) v7 and its extensions in order to detect grape maturity in a white variety of grape (Assyrtiko grape variety). The proposed algorithm was trained using images received over a period of six weeks from grapevines in Drama, Greece. Tests on high-quality images have demonstrated that the detection of five grape maturity stages is possible. Furthermore, the proposed approach has been compared against alternative object detection algorithms. The results showed that YOLO v7 outperforms other architectures both in precision and accuracy. This work paves the way for the development of an autonomous robot for grapevine management.
format Online
Article
Text
id pubmed-10575379
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-105753792023-10-14 A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7 Badeka, Eftichia Karapatzak, Eleftherios Karampatea, Aikaterini Bouloumpasi, Elisavet Kalathas, Ioannis Lytridis, Chris Tziolas, Emmanouil Tsakalidou, Viktoria Nikoleta Kaburlasos, Vassilis G. Sensors (Basel) Article In the viticulture sector, robots are being employed more frequently to increase productivity and accuracy in operations such as vineyard mapping, pruning, and harvesting, especially in locations where human labor is in short supply or expensive. This paper presents the development of an algorithm for grape maturity estimation in the framework of vineyard management. An object detection algorithm is proposed based on You Only Look Once (YOLO) v7 and its extensions in order to detect grape maturity in a white variety of grape (Assyrtiko grape variety). The proposed algorithm was trained using images received over a period of six weeks from grapevines in Drama, Greece. Tests on high-quality images have demonstrated that the detection of five grape maturity stages is possible. Furthermore, the proposed approach has been compared against alternative object detection algorithms. The results showed that YOLO v7 outperforms other architectures both in precision and accuracy. This work paves the way for the development of an autonomous robot for grapevine management. MDPI 2023-09-27 /pmc/articles/PMC10575379/ /pubmed/37836956 http://dx.doi.org/10.3390/s23198126 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Badeka, Eftichia
Karapatzak, Eleftherios
Karampatea, Aikaterini
Bouloumpasi, Elisavet
Kalathas, Ioannis
Lytridis, Chris
Tziolas, Emmanouil
Tsakalidou, Viktoria Nikoleta
Kaburlasos, Vassilis G.
A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7
title A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7
title_full A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7
title_fullStr A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7
title_full_unstemmed A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7
title_short A Deep Learning Approach for Precision Viticulture, Assessing Grape Maturity via YOLOv7
title_sort deep learning approach for precision viticulture, assessing grape maturity via yolov7
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575379/
https://www.ncbi.nlm.nih.gov/pubmed/37836956
http://dx.doi.org/10.3390/s23198126
work_keys_str_mv AT badekaeftichia adeeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT karapatzakeleftherios adeeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT karampateaaikaterini adeeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT bouloumpasielisavet adeeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT kalathasioannis adeeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT lytridischris adeeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT tziolasemmanouil adeeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT tsakalidouviktorianikoleta adeeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT kaburlasosvassilisg adeeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT badekaeftichia deeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT karapatzakeleftherios deeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT karampateaaikaterini deeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT bouloumpasielisavet deeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT kalathasioannis deeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT lytridischris deeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT tziolasemmanouil deeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT tsakalidouviktorianikoleta deeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7
AT kaburlasosvassilisg deeplearningapproachforprecisionviticultureassessinggrapematurityviayolov7