Cargando…
Utilization of Torrefied and Non-Torrefied Short Rotation Willow in Wood–Plastic Composites
The torrefaction process is widely used in the energy field, but the characteristics of the torrefied wood also have positive effects on the production of wood plastic composites. In this study, short-rotation shrub willow was torrefied at 225 and 300 °C and incorporated into polypropylene composite...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575387/ https://www.ncbi.nlm.nih.gov/pubmed/37836046 http://dx.doi.org/10.3390/polym15193997 |
Sumario: | The torrefaction process is widely used in the energy field, but the characteristics of the torrefied wood also have positive effects on the production of wood plastic composites. In this study, short-rotation shrub willow was torrefied at 225 and 300 °C and incorporated into polypropylene composites filled with changing levels of weight percent (wt%) of non-torrefied and torrefied (5, 15, 25, and 40 wt%) wood. Nine different formulations were extruded for mechanical, thermal, and water absorption properties. The tensile properties of composites were not affected by any level of torrefaction, while higher flexure properties were in favor of lower wt% of torrefied wood. The slowest rate of thermal degradation was confirmed for the highest wt% of torrefied wood with a torrefaction temperature of 300 °C. In contrast, the presence of torrefied wood in composites did not show a difference in crystallization or melting temperatures. The most noticeable contribution of torrefaction temperature and wt% was found for water-absorbing properties, where the higher torrefaction temperature and largest wt% of torrefied wood in the composite resulted in decreased water uptake. |
---|