Cargando…
IDAF: Iterative Dual-Scale Attentional Fusion Network for Automatic Modulation Recognition
Recently, deep learning models have been widely applied to modulation recognition, and they have become a hot topic due to their excellent end-to-end learning capabilities. However, current methods are mostly based on uni-modal inputs, which suffer from incomplete information and local optimization....
Autores principales: | Liu, Bohan, Ge, Ruixing, Zhu, Yuxuan, Zhang, Bolin, Zhang, Xiaokai, Bao, Yanfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575420/ https://www.ncbi.nlm.nih.gov/pubmed/37836964 http://dx.doi.org/10.3390/s23198134 |
Ejemplares similares
-
Psychometric Assessment of the Romanian Version of the Index of Dental Anxiety and Fear (IDAF-4C(+))
por: Done, Alexandra Elena, et al.
Publicado: (2023) -
Translation and validation of the Finnish version of index of dental anxiety and fear (IDAF-4C(+)) among dental students
por: Tolvanen, Mimmi, et al.
Publicado: (2017) -
Attention-based dual-path feature fusion network for automatic skin lesion segmentation
por: He, Zhenxiang, et al.
Publicado: (2023) -
Adaptation and Validation of the Malay Version of the Index of Dental Anxiety and Fear (IDAF-4C(+)) for Malaysian Secondary School Children
por: Baharuddin, Izyan Hazwani, et al.
Publicado: (2018) -
Translation and Validation of Italian Version of Index of Dental Anxiety and Fear (IDAF-4C+): A Cross-Sectional Study
por: Salgarello, Stefano, et al.
Publicado: (2021)