Cargando…
The Performance Characterization and Optimization of Fiber-Optic Acoustic Pressure Sensors Based on the MOEMS Sensitized Structure
In order to investigate the factors affecting the acoustic performance of the extrinsic Fabry–Perot interferometer (EFPI) fiber-optic acoustic pressure sensor and to effectively improve its detection capability, this paper enhances the sensor’s detection sensitivity by adding more sensitized rings t...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575427/ https://www.ncbi.nlm.nih.gov/pubmed/37837130 http://dx.doi.org/10.3390/s23198300 |
Sumario: | In order to investigate the factors affecting the acoustic performance of the extrinsic Fabry–Perot interferometer (EFPI) fiber-optic acoustic pressure sensor and to effectively improve its detection capability, this paper enhances the sensor’s detection sensitivity by adding more sensitized rings to its acoustic pressure-sensitive film. Furthermore, a novel real-time coupled acoustic test method is proposed to simultaneously monitor the changes in the spectral and acoustic metrics of the sensor to characterize its overall performance. Finally, an EFPI-type fiber-optic acoustic pressure sensor was developed based on the Micro-Optical Electro-Mechanical System (MOEMS). The acoustic tests indicate that the optimized fiber-optic acoustic pressure sensor has a sensitivity as high as 2253.2 mV/Pa, and the acoustic overload point (AOP) and signal-to-noise ratios (SNRs) can reach 108.85 dB SPL and 79.22 dB, respectively. These results show that the sensor produced through performance characterization experiments and subsequent optimization has a very high acoustic performance index, which provides a scientific theoretical basis for improving the overall performance of the sensor and will have broad application prospects in the field of acoustic detection. |
---|