Cargando…
PEIPNet: Parametric Efficient Image-Inpainting Network with Depthwise and Pointwise Convolution
Research on image-inpainting tasks has mainly focused on enhancing performance by augmenting various stages and modules. However, this trend does not consider the increase in the number of model parameters and operational memory, which increases the burden on computational resources. To solve this p...
Autores principales: | Ko, Jaekyun, Choi, Wanuk, Lee, Sanghwan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575462/ https://www.ncbi.nlm.nih.gov/pubmed/37837143 http://dx.doi.org/10.3390/s23198313 |
Ejemplares similares
-
Inpainting with Separable Mask Update Convolution Network
por: Gong, Jun, et al.
Publicado: (2023) -
WMR-DepthwiseNet: A Wavelet Multi-Resolution Depthwise Separable Convolutional Neural Network for COVID-19 Diagnosis
por: Monday, Happy Nkanta, et al.
Publicado: (2022) -
Deep Matrix Factorization Based on Convolutional Neural Networks for Image Inpainting
por: Ma, Xiaoxuan, et al.
Publicado: (2022) -
Tongue Image Texture Classification Based on Image Inpainting and Convolutional Neural Network
por: Yan, Jianjun, et al.
Publicado: (2022) -
FPGA Implementation for Odor Identification with Depthwise Separable Convolutional Neural Network
por: Mo, Zhuofeng, et al.
Publicado: (2021)