Cargando…

Memory-induced alignment of colloidal dumbbells

When a colloidal probe is forced through a viscoelastic fluid which is characterized by a long stress-relaxation time, the fluid is excited out of equilibrium. This is leading to a number of interesting effects including a non-trivial recoil of the probe when the driving force is removed. Here, we e...

Descripción completa

Detalles Bibliográficos
Autores principales: Krishna Kumar, Karthika, Caspers, Juliana, Ginot, Félix, Krüger, Matthias, Bechinger, Clemens
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575873/
https://www.ncbi.nlm.nih.gov/pubmed/37833487
http://dx.doi.org/10.1038/s41598-023-44547-z
Descripción
Sumario:When a colloidal probe is forced through a viscoelastic fluid which is characterized by a long stress-relaxation time, the fluid is excited out of equilibrium. This is leading to a number of interesting effects including a non-trivial recoil of the probe when the driving force is removed. Here, we experimentally and theoretically investigate the transient recoil dynamics of non-spherical particles, i.e., colloidal dumbbells. In addition to a translational recoil of the dumbbells, we also find a pronounced angular reorientation which results from the relaxation of the surrounding fluid. Our findings are in good agreement with a Langevin description based on the symmetries of a director (dumbbell) as well as a microscopic bath-rod model. Remarkably, we find an instability with amplified fluctuations when the dumbbell is oriented perpendicular to the direction of driving. Our results demonstrate the complex behavior of non-spherical objects within a relaxing environment which are of immediate interest for the motion of externally but also self-driven asymmetric objects in viscoelastic fluids.