Cargando…
Development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis
Early identification of a patient with a high risk of blood transfusion during brain tumor resection surgery is difficult but critical for implementing preoperative blood-saving strategies. This study aims to develop and validate a machine learning prediction tool for intraoperative blood transfusio...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575918/ https://www.ncbi.nlm.nih.gov/pubmed/37833334 http://dx.doi.org/10.1038/s41598-023-44549-x |
_version_ | 1785121014173138944 |
---|---|
author | Xiao, Shugen Jiang, Fei Chen, Yongmei Gong, Xingrui |
author_facet | Xiao, Shugen Jiang, Fei Chen, Yongmei Gong, Xingrui |
author_sort | Xiao, Shugen |
collection | PubMed |
description | Early identification of a patient with a high risk of blood transfusion during brain tumor resection surgery is difficult but critical for implementing preoperative blood-saving strategies. This study aims to develop and validate a machine learning prediction tool for intraoperative blood transfusion in brain tumor resection surgery. A total of 541 patients who underwent brain tumor resection surgery in our hospital from January 2019 to December 2021 were retrospectively enrolled in this study. We incorporated demographics, preoperative comorbidities, and laboratory risk factors. Features were selected using the least absolute shrinkage and selection operator (LASSO). Eight machine learning algorithms were benchmarked to identify the best model to predict intraoperative blood transfusion. The prediction tool was established based on the best algorithm and evaluated with discriminative ability. The data were randomly split into training and test groups at a ratio of 7:3. LASSO identified seven preoperative relevant factors in the training group: hemoglobin, diameter, prothrombin time, white blood cell count (WBC), age, physical status of the American Society of Anesthesiologists (ASA) classification, and heart function. Logistic regression, linear discriminant analysis, supporter vector machine, and ranger all performed better in the eight machine learning algorithms with classification errors of 0.185, 0.193, 0.199, and 0.196, respectively. A nomogram was then established, and the model showed a better discrimination ability [0.817, 95% CI (0.739, 0.895)] than hemoglobin [0.663, 95% CI (0.557, 0.770)] alone in the test group (P = 0.000). Hemoglobin, diameter, prothrombin time, WBC, age, ASA status, and heart function are risk factors of intraoperative blood transfusion in brain tumor resection surgery. The prediction tool established using the logistic regression algorithm showed a good discriminative ability than hemoglobin alone for predicting intraoperative blood transfusion in brain tumor resection surgery. |
format | Online Article Text |
id | pubmed-10575918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105759182023-10-15 Development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis Xiao, Shugen Jiang, Fei Chen, Yongmei Gong, Xingrui Sci Rep Article Early identification of a patient with a high risk of blood transfusion during brain tumor resection surgery is difficult but critical for implementing preoperative blood-saving strategies. This study aims to develop and validate a machine learning prediction tool for intraoperative blood transfusion in brain tumor resection surgery. A total of 541 patients who underwent brain tumor resection surgery in our hospital from January 2019 to December 2021 were retrospectively enrolled in this study. We incorporated demographics, preoperative comorbidities, and laboratory risk factors. Features were selected using the least absolute shrinkage and selection operator (LASSO). Eight machine learning algorithms were benchmarked to identify the best model to predict intraoperative blood transfusion. The prediction tool was established based on the best algorithm and evaluated with discriminative ability. The data were randomly split into training and test groups at a ratio of 7:3. LASSO identified seven preoperative relevant factors in the training group: hemoglobin, diameter, prothrombin time, white blood cell count (WBC), age, physical status of the American Society of Anesthesiologists (ASA) classification, and heart function. Logistic regression, linear discriminant analysis, supporter vector machine, and ranger all performed better in the eight machine learning algorithms with classification errors of 0.185, 0.193, 0.199, and 0.196, respectively. A nomogram was then established, and the model showed a better discrimination ability [0.817, 95% CI (0.739, 0.895)] than hemoglobin [0.663, 95% CI (0.557, 0.770)] alone in the test group (P = 0.000). Hemoglobin, diameter, prothrombin time, WBC, age, ASA status, and heart function are risk factors of intraoperative blood transfusion in brain tumor resection surgery. The prediction tool established using the logistic regression algorithm showed a good discriminative ability than hemoglobin alone for predicting intraoperative blood transfusion in brain tumor resection surgery. Nature Publishing Group UK 2023-10-13 /pmc/articles/PMC10575918/ /pubmed/37833334 http://dx.doi.org/10.1038/s41598-023-44549-x Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Xiao, Shugen Jiang, Fei Chen, Yongmei Gong, Xingrui Development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis |
title | Development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis |
title_full | Development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis |
title_fullStr | Development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis |
title_full_unstemmed | Development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis |
title_short | Development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis |
title_sort | development and validation of a prediction tool for intraoperative blood transfusion in brain tumor resection surgery: a retrospective analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575918/ https://www.ncbi.nlm.nih.gov/pubmed/37833334 http://dx.doi.org/10.1038/s41598-023-44549-x |
work_keys_str_mv | AT xiaoshugen developmentandvalidationofapredictiontoolforintraoperativebloodtransfusioninbraintumorresectionsurgeryaretrospectiveanalysis AT jiangfei developmentandvalidationofapredictiontoolforintraoperativebloodtransfusioninbraintumorresectionsurgeryaretrospectiveanalysis AT chenyongmei developmentandvalidationofapredictiontoolforintraoperativebloodtransfusioninbraintumorresectionsurgeryaretrospectiveanalysis AT gongxingrui developmentandvalidationofapredictiontoolforintraoperativebloodtransfusioninbraintumorresectionsurgeryaretrospectiveanalysis |