Cargando…
A novel sorting signal for RNA packaging into small extracellular vesicles
Extracellular vesicles (EVs) play a critical role in the transport of functional RNAs to target recipient cells in numerous physiological processes. The RNA profiles present in EVs differed significantly from those in the originating cells, suggesting selective and active loading of specific RNAs in...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575923/ https://www.ncbi.nlm.nih.gov/pubmed/37833373 http://dx.doi.org/10.1038/s41598-023-44218-z |
_version_ | 1785121015367467008 |
---|---|
author | Oka, Yuma Tanaka, Kosei Kawasaki, Yuki |
author_facet | Oka, Yuma Tanaka, Kosei Kawasaki, Yuki |
author_sort | Oka, Yuma |
collection | PubMed |
description | Extracellular vesicles (EVs) play a critical role in the transport of functional RNAs to target recipient cells in numerous physiological processes. The RNA profiles present in EVs differed significantly from those in the originating cells, suggesting selective and active loading of specific RNAs into EVs. Small EVs (sEVs) obtained by stepwise ultracentrifugation have been reported to contain non-sEV components. Analysis of sEVs separated from non-sEVs components revealed that microRNAs may not be released by sEVs. This has raised interest in other RNA types, such as mRNA, which may be functional molecules released by sEVs. However, the molecular mechanisms underlying selective loading of mRNA into sEVs remain unclear. Here, we show that the part of 3′ untranslated region (UTR) sequence of RAB13 selectively enriches RNA in sEVs and serves as an RNA signal for loading into sEVs. Our results demonstrate that RAB13 is the most enriched RNA in sEVs, and this enrichment is primarily driven by its 3′UTR sequence. These findings highlight the potential of the RAB13 3′UTR sequence as an RNA signal that enables the loading of target RNA into sEVs. This technology has the potential to improve EV-based drug delivery and other applications. |
format | Online Article Text |
id | pubmed-10575923 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105759232023-10-15 A novel sorting signal for RNA packaging into small extracellular vesicles Oka, Yuma Tanaka, Kosei Kawasaki, Yuki Sci Rep Article Extracellular vesicles (EVs) play a critical role in the transport of functional RNAs to target recipient cells in numerous physiological processes. The RNA profiles present in EVs differed significantly from those in the originating cells, suggesting selective and active loading of specific RNAs into EVs. Small EVs (sEVs) obtained by stepwise ultracentrifugation have been reported to contain non-sEV components. Analysis of sEVs separated from non-sEVs components revealed that microRNAs may not be released by sEVs. This has raised interest in other RNA types, such as mRNA, which may be functional molecules released by sEVs. However, the molecular mechanisms underlying selective loading of mRNA into sEVs remain unclear. Here, we show that the part of 3′ untranslated region (UTR) sequence of RAB13 selectively enriches RNA in sEVs and serves as an RNA signal for loading into sEVs. Our results demonstrate that RAB13 is the most enriched RNA in sEVs, and this enrichment is primarily driven by its 3′UTR sequence. These findings highlight the potential of the RAB13 3′UTR sequence as an RNA signal that enables the loading of target RNA into sEVs. This technology has the potential to improve EV-based drug delivery and other applications. Nature Publishing Group UK 2023-10-13 /pmc/articles/PMC10575923/ /pubmed/37833373 http://dx.doi.org/10.1038/s41598-023-44218-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Oka, Yuma Tanaka, Kosei Kawasaki, Yuki A novel sorting signal for RNA packaging into small extracellular vesicles |
title | A novel sorting signal for RNA packaging into small extracellular vesicles |
title_full | A novel sorting signal for RNA packaging into small extracellular vesicles |
title_fullStr | A novel sorting signal for RNA packaging into small extracellular vesicles |
title_full_unstemmed | A novel sorting signal for RNA packaging into small extracellular vesicles |
title_short | A novel sorting signal for RNA packaging into small extracellular vesicles |
title_sort | novel sorting signal for rna packaging into small extracellular vesicles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575923/ https://www.ncbi.nlm.nih.gov/pubmed/37833373 http://dx.doi.org/10.1038/s41598-023-44218-z |
work_keys_str_mv | AT okayuma anovelsortingsignalforrnapackagingintosmallextracellularvesicles AT tanakakosei anovelsortingsignalforrnapackagingintosmallextracellularvesicles AT kawasakiyuki anovelsortingsignalforrnapackagingintosmallextracellularvesicles AT okayuma novelsortingsignalforrnapackagingintosmallextracellularvesicles AT tanakakosei novelsortingsignalforrnapackagingintosmallextracellularvesicles AT kawasakiyuki novelsortingsignalforrnapackagingintosmallextracellularvesicles |