Cargando…

Relating quanta conservation and compartmental epidemiological models of airborne disease outbreaks in buildings

We investigate the underlying assumptions and limits of applicability of several documented models for outbreaks of airborne disease inside buildings by showing how they may each be regarded as special cases of a system of equations which combines quanta conservation and compartmental epidemiologica...

Descripción completa

Detalles Bibliográficos
Autores principales: Wood, Samuel G. A., Craske, John, Burridge, Henry C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575980/
https://www.ncbi.nlm.nih.gov/pubmed/37833394
http://dx.doi.org/10.1038/s41598-023-44527-3
Descripción
Sumario:We investigate the underlying assumptions and limits of applicability of several documented models for outbreaks of airborne disease inside buildings by showing how they may each be regarded as special cases of a system of equations which combines quanta conservation and compartmental epidemiological modelling. We investigate the behaviour of this system analytically, gaining insight to its behaviour at large time. We then investigate the characteristic timescales of an indoor outbreak, showing how the dilution rate of the space, and the quanta generation rate, incubation rate and removal rate associated with the illness may be used to predict the evolution of an outbreak over time, and may also be used to predict the relative performances of other indoor airborne outbreak models. The model is compared to a more commonly used model, in which it is assumed the environmental concentration of infectious aerosols adheres to a quasi-steady-state, so that the the dimensionless quanta concentration is equal to the the infectious fraction. The model presented here is shown to approach this limit exponentially to within an interval defined by the incubation and removal rates. This may be used to predict the maximum extent to which a case will deviate from the quasi steady state condition.