Cargando…
Reconstructing missing time-varying land subsidence data using back propagation neural network with principal component analysis
Land subsidence, a complex geophysical phenomenon, necessitates comprehensive time-varying data to understand regional subsidence patterns over time. This article focuses on the crucial task of reconstructing missing time-varying land subsidence data in the Choshui Delta, Taiwan. We propose a novel...
Autores principales: | Liu, Chih-Yu, Ku, Cheng-Yu, Hsu, Jia-Fu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10575985/ https://www.ncbi.nlm.nih.gov/pubmed/37833346 http://dx.doi.org/10.1038/s41598-023-44642-1 |
Ejemplares similares
-
Modeling of land subsidence using GIS-based artificial neural network in Yunlin County, Taiwan
por: Ku, Cheng-Yu, et al.
Publicado: (2023) -
Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China
por: Hwang, Cheinway, et al.
Publicado: (2016) -
Spatiotemporal heterogeneity of land subsidence in Beijing
por: Duan, Guangyao, et al.
Publicado: (2022) -
Identification of Tea Storage Times by Linear Discrimination Analysis and Back-Propagation Neural Network Techniques Based on the Eigenvalues of Principal Components Analysis of E-Nose Sensor Signals
por: Yu, Huichun, et al.
Publicado: (2009) -
Evaluation of cultivated land quality using attention mechanism-back propagation neural network
por: Liu, Yulin, et al.
Publicado: (2022)