Cargando…
Deciphering RNA splicing logic with interpretable machine learning
Machine learning methods, particularly neural networks trained on large datasets, are transforming how scientists approach scientific discovery and experimental design. However, current state-of-the-art neural networks are limited by their uninterpretability: Despite their excellent accuracy, they c...
Autores principales: | Liao, Susan E., Sudarshan, Mukund, Regev, Oded |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576025/ https://www.ncbi.nlm.nih.gov/pubmed/37796983 http://dx.doi.org/10.1073/pnas.2221165120 |
Ejemplares similares
-
Splicing at the phase-separated nuclear speckle interface: a model
por: Liao, Susan E, et al.
Publicado: (2020) -
Interpreting machine learning models to investigate circadian regulation and facilitate exploration of clock function
por: Gardiner, Laura-Jayne, et al.
Publicado: (2021) -
Deciphering the reading of the genetic code by near-cognate tRNA
por: Blanchet, Sandra, et al.
Publicado: (2018) -
Deciphering eukaryotic gene-regulatory logic with 100 million random promoters
por: de Boer, Carl G., et al.
Publicado: (2019) -
Deciphering the Plant Splicing Code: Experimental and Computational Approaches for Predicting Alternative Splicing and Splicing Regulatory Elements
por: Reddy, Anireddy S. N., et al.
Publicado: (2012)