Cargando…
PMF-CPI: assessing drug selectivity with a pretrained multi-functional model for compound–protein interactions
Compound–protein interactions (CPI) play significant roles in drug development. To avoid side effects, it is also crucial to evaluate drug selectivity when binding to different targets. However, most selectivity prediction models are constructed for specific targets with limited data. In this study,...
Autores principales: | Song, Nan, Dong, Ruihan, Pu, Yuqian, Wang, Ercheng, Xu, Junhai, Guo, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576287/ https://www.ncbi.nlm.nih.gov/pubmed/37838703 http://dx.doi.org/10.1186/s13321-023-00767-z |
Ejemplares similares
-
MCN-CPI: Multiscale Convolutional Network for Compound–Protein Interaction Prediction
por: Wang, Shuang, et al.
Publicado: (2021) -
CAT-CPI: Combining CNN and transformer to learn compound image features for predicting compound-protein interactions
por: Qian, Ying, et al.
Publicado: (2022) -
To pretrain or not? A systematic analysis of the benefits of pretraining in diabetic retinopathy
por: Srinivasan, Vignesh, et al.
Publicado: (2022) -
Perceiver CPI: a nested cross-attention network for compound–protein interaction prediction
por: Nguyen, Ngoc-Quang, et al.
Publicado: (2022) -
PMF: the front end electronic of the ALFA detector
por: Barrillon, P, et al.
Publicado: (2010)