Cargando…
A comparison of random survival forest and Cox regression for prediction of mortality in patients with hemorrhagic stroke
OBJECTIVE: To evaluate RSF and Cox models for mortality prediction of hemorrhagic stroke (HS) patients in intensive care unit (ICU). METHODS: In the training set, the optimal models were selected using five-fold cross-validation and grid search method. In the test set, the bootstrap method was used...
Autores principales: | Wang, Yuxin, Deng, Yuhan, Tan, Yinliang, Zhou, Meihong, Jiang, Yong, Liu, Baohua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576378/ https://www.ncbi.nlm.nih.gov/pubmed/37833724 http://dx.doi.org/10.1186/s12911-023-02293-2 |
Ejemplares similares
-
Predictors of colorectal cancer survival using cox regression and random survival forests models based on gene expression data
por: Mohammed, Mohanad, et al.
Publicado: (2021) -
Which model is better in predicting the survival of laryngeal squamous cell carcinoma?: Comparison of the random survival forest based on machine learning algorithms to Cox regression: analyses based on SEER database
por: Sun, Haili, et al.
Publicado: (2023) -
Comparison of the cox regression to machine learning in predicting the survival of anaplastic thyroid carcinoma
por: Xu, Lizhen, et al.
Publicado: (2023) -
Comparison of Cox proportional hazards regression and generalized Cox regression models applied in dementia risk prediction
por: Goerdten, Jantje, et al.
Publicado: (2020) -
Correction: Comparison of the cox regression to machine learning in predicting the survival of anaplastic thyroid carcinoma
por: Xu, Lizhen, et al.
Publicado: (2023)