Cargando…

Surface antibody changes protein corona both in human and mouse serum but not final opsonization and elimination of targeted polymeric nanoparticles

BACKGROUND: Nanoparticles represent one of the most important innovations in the medical field. Among nanocarriers, polymeric nanoparticles (PNPs) attracted much attention due to their biodegradability, biocompatibility, and capacity to increase efficacy and safety of encapsulated drugs. Another imp...

Descripción completa

Detalles Bibliográficos
Autores principales: Capolla, Sara, Colombo, Federico, De Maso, Luca, Mauro, Prisca, Bertoncin, Paolo, Kähne, Thilo, Engler, Alexander, Núñez, Luis, Spretz, Ruben, Larsen, Gustavo, Dal Bo, Michele, Toffoli, Giuseppe, Macor, Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576379/
https://www.ncbi.nlm.nih.gov/pubmed/37838659
http://dx.doi.org/10.1186/s12951-023-02134-4
Descripción
Sumario:BACKGROUND: Nanoparticles represent one of the most important innovations in the medical field. Among nanocarriers, polymeric nanoparticles (PNPs) attracted much attention due to their biodegradability, biocompatibility, and capacity to increase efficacy and safety of encapsulated drugs. Another important improvement in the use of nanoparticles as delivery systems is the conjugation of a targeting agent that enables the nanoparticles to accumulate in a specific tissue. Despite these advantages, the clinical translation of therapeutic approaches based on nanoparticles is prevented by their interactions with blood proteins. In fact, the so-formed protein corona (PC) drastically alters the biological identity of the particles. Adsorbed activated proteins of the complement cascade play a pivotal role in the clearance of nanoparticles, making them more easily recognized by macrophages, leading to their rapid elimination from the bloodstream and limiting their efficacy. Since the mouse is the most used preclinical model for human disease, this work compared human and mouse PC formed on untargeted PNPs (uPNPs) and targeted PNPs (tPNPs), paying particular attention to complement activation. RESULTS: Mouse and human serum proteins adsorbed differently to PNPs. The differences in the binding of mouse complement proteins are minimal, whereas human complement components strongly distinguish the two particles. This is probably due to the human origin of the Fc portion of the antibody used as targeting agent on tPNPs. tPNPs and uPNPs mainly activate complement via the classical and alternative pathways, respectively, but this pattern did not affect their binding and internalization in macrophages and only a limited consumption of the activity of the human complement system was documented. CONCLUSIONS: The results clearly indicate the presence of complement proteins on PNPs surface but partially derived from an unspecific deposition rather than an effective complement activation. The presence of a targeting antibody favors the activation of the classical pathway, but its absence allows an increased activation of the alternative pathway. This results in similar opsonization of both PNPs and similar phagocytosis by macrophages, without an impairment of the activity of circulating complement system and, consequently, not enhancing the susceptibility to infection. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12951-023-02134-4.