Cargando…
A brain tumor computer-aided diagnosis method with automatic lesion segmentation and ensemble decision strategy
OBJECTIVES: Gliomas and brain metastases (Mets) are the most common brain malignancies. The treatment strategy and clinical prognosis of patients are different, requiring accurate diagnosis of tumor types. However, the traditional radiomics diagnostic pipeline requires manual annotation and lacks in...
Autores principales: | Yu, Liheng, Yu, Zekuan, Sun, Linlin, Zhu, Li, Geng, Daoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576559/ https://www.ncbi.nlm.nih.gov/pubmed/37841015 http://dx.doi.org/10.3389/fmed.2023.1232496 |
Ejemplares similares
-
Automatic Segmentation of Novel Coronavirus Pneumonia Lesions in CT Images Utilizing Deep-Supervised Ensemble Learning Network
por: Peng, Yuanyuan, et al.
Publicado: (2022) -
Computer-aided diagnosis using embedded ensemble deep learning for multiclass drug-resistant tuberculosis classification
por: Sethanan, Kanchana, et al.
Publicado: (2023) -
Computer-Aided Grading of Gliomas Combining Automatic Segmentation and Radiomics
por: Chen, Wei, et al.
Publicado: (2018) -
COFE-Net: An ensemble strategy for Computer-Aided Detection for COVID-19
por: Banerjee, Avinandan, et al.
Publicado: (2022) -
External validation of a convolutional neural network for the automatic segmentation of intraprostatic tumor lesions on (68)Ga-PSMA PET images
por: Ghezzo, Samuele, et al.
Publicado: (2023)