Cargando…
Continuous visualization and validation of pain in critically ill patients using artificial intelligence: a retrospective observational study
Machine learning tools have demonstrated viability in visualizing pain accurately using vital sign data; however, it remains uncertain whether incorporating individual patient baselines could enhance accuracy. This study aimed to investigate improving the accuracy by incorporating deviations from ba...
Autores principales: | Kobayashi, Naoya, Watanabe, Kazuki, Murakami, Hitoshi, Yamauchi, Masanori |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576770/ https://www.ncbi.nlm.nih.gov/pubmed/37838818 http://dx.doi.org/10.1038/s41598-023-44970-2 |
Ejemplares similares
-
Semi-automated tracking of pain in critical care patients using artificial intelligence: a retrospective observational study
por: Kobayashi, Naoya, et al.
Publicado: (2021) -
Continuous Renal Replacement Therapy in the Critically Ill Patient: From Garage Technology to Artificial Intelligence
por: Samoni, Sara, et al.
Publicado: (2021) -
Artificial intelligence and computer simulation models in critical illness
por: Lal, Amos, et al.
Publicado: (2020) -
Artificial intelligence in cardiology: the debate continues
por: Asselbergs, Folkert W, et al.
Publicado: (2021) -
Validation of the Italian version of the Critical Pain Observation Tool in brain-injured critically ill adults
por: Sulla, Francesco, et al.
Publicado: (2017)