Cargando…
Detecting latent topics and trends of digital twins in healthcare: A structural topic model-based systematic review
OBJECTIVE: Digital twins (DTs) have received widespread attention recently, providing new ideas and possibilities for future healthcare. This review aims to provide a quantitative review to analyze specific study contents, research focus, and trends of DT in healthcare. Simultaneously, this review i...
Autores principales: | Sheng, Bo, Wang, Zheyu, Qiao, Yujiao, Xie, Sheng Quan, Tao, Jing, Duan, Chaoqun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10576938/ https://www.ncbi.nlm.nih.gov/pubmed/37846404 http://dx.doi.org/10.1177/20552076231203672 |
Ejemplares similares
-
Detecting latent topics and trends in blended learning using LDA topic modeling
por: Yin, Bin, et al.
Publicado: (2022) -
Detecting Latent Topics and Trends in Global Publications on Brucellosis Disease Using Text Mining
por: Dastani, Meisam, et al.
Publicado: (2022) -
A bibliometric review on latent topics and trends of the empirical MOOC literature (2008–2019)
por: Liu, Caixia, et al.
Publicado: (2021) -
Public perceptions of digital fashion: An analysis of sentiment and Latent Dirichlet Allocation topic modeling
por: Zou, Yixin, et al.
Publicado: (2022) -
Identifying Topics and Evolutionary Trends of Literature on Brain Metastases Using Latent Dirichlet Allocation
por: Chen, Jiarong, et al.
Publicado: (2022)