Cargando…

Seamless and orthogonal expression of genetic parts in polyhydroxyalkanoate (PHA)-producing bacterial chassis for plastic bio-upcycling applications

Polyhydroxyalkanoate (PHA)-producing bacteria represent a powerful synthetic biology chassis for waste bioconversion and bio-upcycling where PHAs can be produced as the final products. In this study, we present a seamless plasmid construction for orthogonal expression of recombinant PET hydrolase (P...

Descripción completa

Detalles Bibliográficos
Autores principales: Minggu, Matthlessa Matthew, Naseron, Nur Anisza Hanoum, Shaberi, Hazlam Shamin Ahmad, Muhammad, Nor Azlan Nor, Baharum, Syarul Nataqain, Ramzi, Ahmad Bazli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577049/
https://www.ncbi.nlm.nih.gov/pubmed/37846354
http://dx.doi.org/10.1016/j.mex.2023.102434
Descripción
Sumario:Polyhydroxyalkanoate (PHA)-producing bacteria represent a powerful synthetic biology chassis for waste bioconversion and bio-upcycling where PHAs can be produced as the final products. In this study, we present a seamless plasmid construction for orthogonal expression of recombinant PET hydrolase (PETase) in model PHA-producing bacteria P. putida and C. necator. To this end, this study described seamless cloning and expression methods utilizing SureVector (SV) system for generating pSV-Ortho-PHA (pSVOP) expression platform in bioengineered P. putida and C. necator. Genetic parts specifically Trc promoter, pBBR1 origin of replication, anchoring proteins and signal sequences were utilized for the transformation of pSVOP-based plasmid in electrocompetent cells and orthogonal expression of PETase in both P. putida and C. necator. Validation steps in confirming functional expression of PETase activity in corresponding PETase-expressing strains were also described to demonstrate seamless and detailed methods in establishing bioengineered P. putida and C. necator • Seamless plasmid construction for orthogonal expression in PHA-producing bacteria. • Step-by-step guide for high-efficiency generation of electrotransformants of P. putida and C. necator. • Adaptable methods for rapid strain development (Design, Build, Test and Learn) for whole-cell biocatalysis.