Cargando…
Generation of synthetic EEG data for training algorithms supporting the diagnosis of major depressive disorder
INTRODUCTION: Major depressive disorder (MDD) is the most common mental disorder worldwide, leading to impairment in quality and independence of life. Electroencephalography (EEG) biomarkers processed with machine learning (ML) algorithms have been explored for objective diagnoses with promising res...
Autores principales: | Carrle, Friedrich Philipp, Hollenbenders, Yasmin, Reichenbach, Alexandra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577178/ https://www.ncbi.nlm.nih.gov/pubmed/37849893 http://dx.doi.org/10.3389/fnins.2023.1219133 |
Ejemplares similares
-
Emotion self-regulation training in major depressive disorder using simultaneous real-time fMRI and EEG neurofeedback
por: Zotev, Vadim, et al.
Publicado: (2020) -
SEED-G: Simulated EEG Data Generator for Testing Connectivity Algorithms
por: Anzolin, Alessandra, et al.
Publicado: (2021) -
A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal
por: Liu, Wei, et al.
Publicado: (2022) -
Prediction of Clinical Outcomes With EEG Microstate in Patients With Major Depressive Disorder
por: Yan, Danfeng, et al.
Publicado: (2021) -
Automatic depression diagnosis through hybrid EEG and near-infrared spectroscopy features using support vector machine
por: Yi, Li, et al.
Publicado: (2023)