Cargando…

Safety assessment of the process ENVICCO, based on EREMA basic and Polymetrix SSP leaN technology, used to recycle post‐consumer PET into food contact materials

The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process ENVICCO (EU register number RECYC301), which uses the EREMA basic and Polymetrix SSP leaN technology. The input consists of hot caustic washed and dried poly(ethylene terephthalat...

Descripción completa

Detalles Bibliográficos
Autores principales: Lambré, Claude, Barat Baviera, José Manuel, Bolognesi, Claudia, Chesson, Andrew, Cocconcelli, Pier Sandro, Crebelli, Riccardo, Gott, David Michael, Grob, Konrad, Mengelers, Marcel, Mortensen, Alicja, Rivière, Gilles, Steffensen, Inger‐Lise, Tlustos, Christina, Van Loveren, Henk, Vernis, Laurence, Zorn, Holger, Dudler, Vincent, Milana, Maria Rosaria, Papaspyrides, Constantine, Tavares Poças, Maria de Fátima, Lioupis, Alexandros, Sfika, Vasiliki, Lampi, Evgenia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577613/
https://www.ncbi.nlm.nih.gov/pubmed/37849622
http://dx.doi.org/10.2903/j.efsa.2023.8262
Descripción
Sumario:The EFSA Panel on Food Contact Materials, Enzymes and Processing Aids (CEP) assessed the safety of the recycling process ENVICCO (EU register number RECYC301), which uses the EREMA basic and Polymetrix SSP leaN technology. The input consists of hot caustic washed and dried poly(ethylene terephthalate) (PET) flakes mainly originating from collected post‐consumer PET containers, with no more than 5% PET from non‐food consumer applications. The flakes are pre‐decontaminated in the EREMA reactor at high temperature under vacuum (step 2) before being extruded, pelletised and crystallised (step 3). The crystallised pellets are then preheated (step 4) and submitted to solid‐state polycondensation (SSP) (step 5) at ■■■■■ temperature and under nitrogen flow. Having examined the challenge tests provided, the Panel concluded that step 2 as well as steps 4 and 5 are critical for determining the decontamination efficiency of the process. The operating parameters to control the performance of these critical steps are temperature, pressure and residence time for step 2 and temperature, residence time and gas velocity for steps 4 and 5. It was demonstrated that this recycling process is able to ensure that the level of migration of potential unknown contaminants into food is below the conservatively modelled migration of 0.1 μg/kg food. Therefore, the Panel concluded that the recycled PET obtained from this process is not of safety concern, when used at up to 100% for the manufacture of materials and articles for contact with all types of foodstuffs, including drinking water, for long‐term storage at room temperature or below, with or without hotfill. The final articles made of this recycled PET are not intended to be used in microwave and conventional ovens and such uses are not covered by this evaluation.