Cargando…

Singlet and Triplet Pathways Determine the Thermal Z/E Isomerization of an Arylazopyrazole-Based Photoswitch

[Image: see text] Understanding the thermal isomerization mechanism of azobenzene derivatives is essential to designing photoswitches with tunable half-lives. Herein, we employ quantum chemical calculations, nonadiabatic transition state theory, and photosensitized experiments to unravel the thermal...

Descripción completa

Detalles Bibliográficos
Autores principales: Singer, Nadja K., Schlögl, Katharina, Zobel, J. Patrick, Mihovilovic, Marko D., González, Leticia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577781/
https://www.ncbi.nlm.nih.gov/pubmed/37772734
http://dx.doi.org/10.1021/acs.jpclett.3c01785
_version_ 1785121385012527104
author Singer, Nadja K.
Schlögl, Katharina
Zobel, J. Patrick
Mihovilovic, Marko D.
González, Leticia
author_facet Singer, Nadja K.
Schlögl, Katharina
Zobel, J. Patrick
Mihovilovic, Marko D.
González, Leticia
author_sort Singer, Nadja K.
collection PubMed
description [Image: see text] Understanding the thermal isomerization mechanism of azobenzene derivatives is essential to designing photoswitches with tunable half-lives. Herein, we employ quantum chemical calculations, nonadiabatic transition state theory, and photosensitized experiments to unravel the thermal Z/E isomerization of a heteroaromatic azoswitch, the phenylazo-1,3,5-trimethylpyrazole. In contrast to the parent azobenzene, we predict two pathways to be operative at room temperature. One is a conventional ground-state reaction occurring via inversion of the aryl group, and the other is a nonadiabatic process involving intersystem crossing to the lowest-lying triplet state and back to the ground state, accompanied by a torsional motion around the azo bond. Our results illustrate that the fastest reaction rate is not controlled by the mechanism involving the lowest activation energy, but the size of the spin–orbit couplings at the crossing between the singlet and the triplet potential energy surfaces is also determinant. It is therefore mandatory to consider all of the multiple reaction pathways in azoswitches in order to predict experimental half-lives.
format Online
Article
Text
id pubmed-10577781
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-105777812023-10-17 Singlet and Triplet Pathways Determine the Thermal Z/E Isomerization of an Arylazopyrazole-Based Photoswitch Singer, Nadja K. Schlögl, Katharina Zobel, J. Patrick Mihovilovic, Marko D. González, Leticia J Phys Chem Lett [Image: see text] Understanding the thermal isomerization mechanism of azobenzene derivatives is essential to designing photoswitches with tunable half-lives. Herein, we employ quantum chemical calculations, nonadiabatic transition state theory, and photosensitized experiments to unravel the thermal Z/E isomerization of a heteroaromatic azoswitch, the phenylazo-1,3,5-trimethylpyrazole. In contrast to the parent azobenzene, we predict two pathways to be operative at room temperature. One is a conventional ground-state reaction occurring via inversion of the aryl group, and the other is a nonadiabatic process involving intersystem crossing to the lowest-lying triplet state and back to the ground state, accompanied by a torsional motion around the azo bond. Our results illustrate that the fastest reaction rate is not controlled by the mechanism involving the lowest activation energy, but the size of the spin–orbit couplings at the crossing between the singlet and the triplet potential energy surfaces is also determinant. It is therefore mandatory to consider all of the multiple reaction pathways in azoswitches in order to predict experimental half-lives. American Chemical Society 2023-09-29 /pmc/articles/PMC10577781/ /pubmed/37772734 http://dx.doi.org/10.1021/acs.jpclett.3c01785 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Singer, Nadja K.
Schlögl, Katharina
Zobel, J. Patrick
Mihovilovic, Marko D.
González, Leticia
Singlet and Triplet Pathways Determine the Thermal Z/E Isomerization of an Arylazopyrazole-Based Photoswitch
title Singlet and Triplet Pathways Determine the Thermal Z/E Isomerization of an Arylazopyrazole-Based Photoswitch
title_full Singlet and Triplet Pathways Determine the Thermal Z/E Isomerization of an Arylazopyrazole-Based Photoswitch
title_fullStr Singlet and Triplet Pathways Determine the Thermal Z/E Isomerization of an Arylazopyrazole-Based Photoswitch
title_full_unstemmed Singlet and Triplet Pathways Determine the Thermal Z/E Isomerization of an Arylazopyrazole-Based Photoswitch
title_short Singlet and Triplet Pathways Determine the Thermal Z/E Isomerization of an Arylazopyrazole-Based Photoswitch
title_sort singlet and triplet pathways determine the thermal z/e isomerization of an arylazopyrazole-based photoswitch
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577781/
https://www.ncbi.nlm.nih.gov/pubmed/37772734
http://dx.doi.org/10.1021/acs.jpclett.3c01785
work_keys_str_mv AT singernadjak singletandtripletpathwaysdeterminethethermalzeisomerizationofanarylazopyrazolebasedphotoswitch
AT schloglkatharina singletandtripletpathwaysdeterminethethermalzeisomerizationofanarylazopyrazolebasedphotoswitch
AT zobeljpatrick singletandtripletpathwaysdeterminethethermalzeisomerizationofanarylazopyrazolebasedphotoswitch
AT mihovilovicmarkod singletandtripletpathwaysdeterminethethermalzeisomerizationofanarylazopyrazolebasedphotoswitch
AT gonzalezleticia singletandtripletpathwaysdeterminethethermalzeisomerizationofanarylazopyrazolebasedphotoswitch