Cargando…

MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites

Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chengqi, Dong, Yibo, Li, Chang, Oberstaller, Jenna, Zhang, Min, Gibbons, Justin, Pires, Camilla Valente, Xiao, Mianli, Zhu, Lei, Jiang, Rays H. Y., Kim, Kami, Miao, Jun, Otto, Thomas D., Cui, Liwang, Adams, John H., Liu, Xiaoming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577899/
https://www.ncbi.nlm.nih.gov/pubmed/37845769
http://dx.doi.org/10.1186/s13059-023-03063-z
_version_ 1785121405154623488
author Wang, Chengqi
Dong, Yibo
Li, Chang
Oberstaller, Jenna
Zhang, Min
Gibbons, Justin
Pires, Camilla Valente
Xiao, Mianli
Zhu, Lei
Jiang, Rays H. Y.
Kim, Kami
Miao, Jun
Otto, Thomas D.
Cui, Liwang
Adams, John H.
Liu, Xiaoming
author_facet Wang, Chengqi
Dong, Yibo
Li, Chang
Oberstaller, Jenna
Zhang, Min
Gibbons, Justin
Pires, Camilla Valente
Xiao, Mianli
Zhu, Lei
Jiang, Rays H. Y.
Kim, Kami
Miao, Jun
Otto, Thomas D.
Cui, Liwang
Adams, John H.
Liu, Xiaoming
author_sort Wang, Chengqi
collection PubMed
description Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria parasites. The MalariaSED performance was validated by published ChIP-qPCR and TF motifs results. Applying MalariaSED to ~ 1.3 million variants shows that geographically differentiated noncoding variants are associated with parasite invasion and drug resistance. Further analysis reveals chromatin accessibility changes at Plasmodium falciparum rings are partly associated with artemisinin resistance. MalariaSED illuminates the potential functional roles of noncoding variants in malaria parasites. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-03063-z.
format Online
Article
Text
id pubmed-10577899
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-105778992023-10-17 MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites Wang, Chengqi Dong, Yibo Li, Chang Oberstaller, Jenna Zhang, Min Gibbons, Justin Pires, Camilla Valente Xiao, Mianli Zhu, Lei Jiang, Rays H. Y. Kim, Kami Miao, Jun Otto, Thomas D. Cui, Liwang Adams, John H. Liu, Xiaoming Genome Biol Method Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria parasites. The MalariaSED performance was validated by published ChIP-qPCR and TF motifs results. Applying MalariaSED to ~ 1.3 million variants shows that geographically differentiated noncoding variants are associated with parasite invasion and drug resistance. Further analysis reveals chromatin accessibility changes at Plasmodium falciparum rings are partly associated with artemisinin resistance. MalariaSED illuminates the potential functional roles of noncoding variants in malaria parasites. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13059-023-03063-z. BioMed Central 2023-10-16 /pmc/articles/PMC10577899/ /pubmed/37845769 http://dx.doi.org/10.1186/s13059-023-03063-z Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Method
Wang, Chengqi
Dong, Yibo
Li, Chang
Oberstaller, Jenna
Zhang, Min
Gibbons, Justin
Pires, Camilla Valente
Xiao, Mianli
Zhu, Lei
Jiang, Rays H. Y.
Kim, Kami
Miao, Jun
Otto, Thomas D.
Cui, Liwang
Adams, John H.
Liu, Xiaoming
MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_full MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_fullStr MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_full_unstemmed MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_short MalariaSED: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
title_sort malariased: a deep learning framework to decipher the regulatory contributions of noncoding variants in malaria parasites
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10577899/
https://www.ncbi.nlm.nih.gov/pubmed/37845769
http://dx.doi.org/10.1186/s13059-023-03063-z
work_keys_str_mv AT wangchengqi malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT dongyibo malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT lichang malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT oberstallerjenna malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT zhangmin malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT gibbonsjustin malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT pirescamillavalente malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT xiaomianli malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT zhulei malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT jiangrayshy malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT kimkami malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT miaojun malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT ottothomasd malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT cuiliwang malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT adamsjohnh malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites
AT liuxiaoming malariasedadeeplearningframeworktodeciphertheregulatorycontributionsofnoncodingvariantsinmalariaparasites