Cargando…
Leveraging machine learning approaches for predicting potential Lyme disease cases and incidence rates in the United States using Twitter
BACKGROUND: Lyme disease is one of the most commonly reported infectious diseases in the United States (US), accounting for more than [Formula: see text] of all vector-borne diseases in North America. OBJECTIVE: In this paper, self-reported tweets on Twitter were analyzed in order to predict potenti...
Autores principales: | Boligarla, Srikanth, Laison, Elda Kokoè Elolo, Li, Jiaxin, Mahadevan, Raja, Ng, Austen, Lin, Yangming, Thioub, Mamadou Yamar, Huang, Bruce, Ibrahim, Mohamed Hamza, Nasri, Bouchra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578027/ https://www.ncbi.nlm.nih.gov/pubmed/37845666 http://dx.doi.org/10.1186/s12911-023-02315-z |
Ejemplares similares
-
Identifying Potential Lyme Disease Cases Using Self-Reported Worldwide Tweets: Deep Learning Modeling Approach Enhanced With Sentimental Words Through Emojis
por: Laison, Elda Kokoe Elolo, et al.
Publicado: (2023) -
Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams
por: Eshleman, Ryan, et al.
Publicado: (2016) -
Leveraging Twitter to gauge evacuation compliance: Spatiotemporal analysis of Hurricane Matthew
por: Martín, Yago, et al.
Publicado: (2017) -
Leveraging twitter data to understand nurses’ emotion dynamics during the COVID-19 pandemic
por: Zhou, Jianlong, et al.
Publicado: (2023) -
Several cases of arterial thrombosis of the limbs revealing asymptomatic and paucisymptomatic COVID-19 infection
por: Niang, Ibrahima, et al.
Publicado: (2021)