Cargando…

Molecular van der Waals Fluids in Cavity Quantum Electrodynamics

[Image: see text] Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. In this work, we demonstrate that strong light–matter coupling can be used to control the thermodynamic properties of many-mol...

Descripción completa

Detalles Bibliográficos
Autores principales: Philbin, John P., Haugland, Tor S., Ghosh, Tushar K., Ronca, Enrico, Chen, Ming, Narang, Prineha, Koch, Henrik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578074/
https://www.ncbi.nlm.nih.gov/pubmed/37774379
http://dx.doi.org/10.1021/acs.jpclett.3c01790
_version_ 1785121443211640832
author Philbin, John P.
Haugland, Tor S.
Ghosh, Tushar K.
Ronca, Enrico
Chen, Ming
Narang, Prineha
Koch, Henrik
author_facet Philbin, John P.
Haugland, Tor S.
Ghosh, Tushar K.
Ronca, Enrico
Chen, Ming
Narang, Prineha
Koch, Henrik
author_sort Philbin, John P.
collection PubMed
description [Image: see text] Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. In this work, we demonstrate that strong light–matter coupling can be used to control the thermodynamic properties of many-molecule systems. Our analyses reveal orientation dependent single molecule energies and interaction energies for van der Waals molecules. For example, we find intermolecular interactions that depend on the distance between the molecules R as R(–3) and R(0). Moreover, we employ ab initio cavity quantum electrodynamics calculations to develop machine-learning-based interaction potentials for molecules inside optical cavities. By simulating systems ranging from 12 H(2) to 144 H(2) molecules, we observe varying degrees of orientational order because of cavity-modified interactions, and we explain how quantum nuclear effects, light–matter coupling strengths, number of cavity modes, molecular anisotropies, and system size all impact the extent of orientational order.
format Online
Article
Text
id pubmed-10578074
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-105780742023-10-17 Molecular van der Waals Fluids in Cavity Quantum Electrodynamics Philbin, John P. Haugland, Tor S. Ghosh, Tushar K. Ronca, Enrico Chen, Ming Narang, Prineha Koch, Henrik J Phys Chem Lett [Image: see text] Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. In this work, we demonstrate that strong light–matter coupling can be used to control the thermodynamic properties of many-molecule systems. Our analyses reveal orientation dependent single molecule energies and interaction energies for van der Waals molecules. For example, we find intermolecular interactions that depend on the distance between the molecules R as R(–3) and R(0). Moreover, we employ ab initio cavity quantum electrodynamics calculations to develop machine-learning-based interaction potentials for molecules inside optical cavities. By simulating systems ranging from 12 H(2) to 144 H(2) molecules, we observe varying degrees of orientational order because of cavity-modified interactions, and we explain how quantum nuclear effects, light–matter coupling strengths, number of cavity modes, molecular anisotropies, and system size all impact the extent of orientational order. American Chemical Society 2023-09-29 /pmc/articles/PMC10578074/ /pubmed/37774379 http://dx.doi.org/10.1021/acs.jpclett.3c01790 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Philbin, John P.
Haugland, Tor S.
Ghosh, Tushar K.
Ronca, Enrico
Chen, Ming
Narang, Prineha
Koch, Henrik
Molecular van der Waals Fluids in Cavity Quantum Electrodynamics
title Molecular van der Waals Fluids in Cavity Quantum Electrodynamics
title_full Molecular van der Waals Fluids in Cavity Quantum Electrodynamics
title_fullStr Molecular van der Waals Fluids in Cavity Quantum Electrodynamics
title_full_unstemmed Molecular van der Waals Fluids in Cavity Quantum Electrodynamics
title_short Molecular van der Waals Fluids in Cavity Quantum Electrodynamics
title_sort molecular van der waals fluids in cavity quantum electrodynamics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578074/
https://www.ncbi.nlm.nih.gov/pubmed/37774379
http://dx.doi.org/10.1021/acs.jpclett.3c01790
work_keys_str_mv AT philbinjohnp molecularvanderwaalsfluidsincavityquantumelectrodynamics
AT hauglandtors molecularvanderwaalsfluidsincavityquantumelectrodynamics
AT ghoshtushark molecularvanderwaalsfluidsincavityquantumelectrodynamics
AT roncaenrico molecularvanderwaalsfluidsincavityquantumelectrodynamics
AT chenming molecularvanderwaalsfluidsincavityquantumelectrodynamics
AT narangprineha molecularvanderwaalsfluidsincavityquantumelectrodynamics
AT kochhenrik molecularvanderwaalsfluidsincavityquantumelectrodynamics