Cargando…
Molecular van der Waals Fluids in Cavity Quantum Electrodynamics
[Image: see text] Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. In this work, we demonstrate that strong light–matter coupling can be used to control the thermodynamic properties of many-mol...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578074/ https://www.ncbi.nlm.nih.gov/pubmed/37774379 http://dx.doi.org/10.1021/acs.jpclett.3c01790 |
_version_ | 1785121443211640832 |
---|---|
author | Philbin, John P. Haugland, Tor S. Ghosh, Tushar K. Ronca, Enrico Chen, Ming Narang, Prineha Koch, Henrik |
author_facet | Philbin, John P. Haugland, Tor S. Ghosh, Tushar K. Ronca, Enrico Chen, Ming Narang, Prineha Koch, Henrik |
author_sort | Philbin, John P. |
collection | PubMed |
description | [Image: see text] Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. In this work, we demonstrate that strong light–matter coupling can be used to control the thermodynamic properties of many-molecule systems. Our analyses reveal orientation dependent single molecule energies and interaction energies for van der Waals molecules. For example, we find intermolecular interactions that depend on the distance between the molecules R as R(–3) and R(0). Moreover, we employ ab initio cavity quantum electrodynamics calculations to develop machine-learning-based interaction potentials for molecules inside optical cavities. By simulating systems ranging from 12 H(2) to 144 H(2) molecules, we observe varying degrees of orientational order because of cavity-modified interactions, and we explain how quantum nuclear effects, light–matter coupling strengths, number of cavity modes, molecular anisotropies, and system size all impact the extent of orientational order. |
format | Online Article Text |
id | pubmed-10578074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-105780742023-10-17 Molecular van der Waals Fluids in Cavity Quantum Electrodynamics Philbin, John P. Haugland, Tor S. Ghosh, Tushar K. Ronca, Enrico Chen, Ming Narang, Prineha Koch, Henrik J Phys Chem Lett [Image: see text] Intermolecular van der Waals interactions are central to chemical and physical phenomena ranging from biomolecule binding to soft-matter phase transitions. In this work, we demonstrate that strong light–matter coupling can be used to control the thermodynamic properties of many-molecule systems. Our analyses reveal orientation dependent single molecule energies and interaction energies for van der Waals molecules. For example, we find intermolecular interactions that depend on the distance between the molecules R as R(–3) and R(0). Moreover, we employ ab initio cavity quantum electrodynamics calculations to develop machine-learning-based interaction potentials for molecules inside optical cavities. By simulating systems ranging from 12 H(2) to 144 H(2) molecules, we observe varying degrees of orientational order because of cavity-modified interactions, and we explain how quantum nuclear effects, light–matter coupling strengths, number of cavity modes, molecular anisotropies, and system size all impact the extent of orientational order. American Chemical Society 2023-09-29 /pmc/articles/PMC10578074/ /pubmed/37774379 http://dx.doi.org/10.1021/acs.jpclett.3c01790 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Philbin, John P. Haugland, Tor S. Ghosh, Tushar K. Ronca, Enrico Chen, Ming Narang, Prineha Koch, Henrik Molecular van der Waals Fluids in Cavity Quantum Electrodynamics |
title | Molecular van
der Waals Fluids in Cavity Quantum Electrodynamics |
title_full | Molecular van
der Waals Fluids in Cavity Quantum Electrodynamics |
title_fullStr | Molecular van
der Waals Fluids in Cavity Quantum Electrodynamics |
title_full_unstemmed | Molecular van
der Waals Fluids in Cavity Quantum Electrodynamics |
title_short | Molecular van
der Waals Fluids in Cavity Quantum Electrodynamics |
title_sort | molecular van
der waals fluids in cavity quantum electrodynamics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578074/ https://www.ncbi.nlm.nih.gov/pubmed/37774379 http://dx.doi.org/10.1021/acs.jpclett.3c01790 |
work_keys_str_mv | AT philbinjohnp molecularvanderwaalsfluidsincavityquantumelectrodynamics AT hauglandtors molecularvanderwaalsfluidsincavityquantumelectrodynamics AT ghoshtushark molecularvanderwaalsfluidsincavityquantumelectrodynamics AT roncaenrico molecularvanderwaalsfluidsincavityquantumelectrodynamics AT chenming molecularvanderwaalsfluidsincavityquantumelectrodynamics AT narangprineha molecularvanderwaalsfluidsincavityquantumelectrodynamics AT kochhenrik molecularvanderwaalsfluidsincavityquantumelectrodynamics |