Cargando…
Systemic and local inflammatory response after implantation of biomaterial in critical bone injuries
PURPOSE: To evaluate inflammatory response in critical bone injuries after implantation of the biomaterial composed of hydroxyapatite (HA)/poly (lactic-coglycolic acid) (PLGA)/BLEED. METHODS: Forty-eight male Wistar rats (280 ± 20 grams) were divided into two groups: control group (CG), in which the...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira para o Desenvolvimento da Pesquisa em Cirurgia
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578104/ https://www.ncbi.nlm.nih.gov/pubmed/37851783 http://dx.doi.org/10.1590/acb383823 |
Sumario: | PURPOSE: To evaluate inflammatory response in critical bone injuries after implantation of the biomaterial composed of hydroxyapatite (HA)/poly (lactic-coglycolic acid) (PLGA)/BLEED. METHODS: Forty-eight male Wistar rats (280 ± 20 grams) were divided into two groups: control group (CG), in which the animals do not receive any type of treatment; and biomaterial group (BG), in which the animals received the HA/PLGA/BLEED scaffold. Critical bone injury was induced in the medial region of the skull calotte with the aid of a trephine drill 8 mm in diameter. The biomaterial was implanted in the form of 1.5-mm thick scaffolds. Serum and calotte were collected at one, three and seven days. RESULTS: Biomaterial had a significant effect on the morphological structure of the bone, accelerating osteoblast activation within three days, without causing exacerbated systemic inflammation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that BG induced upregulation of osteogenic genes such as runt-related transcription factor 2, and stimulated genes of inflammatory pathways such as tumor necrosis factor-α, on the first day without overexpressing genes related to bone matrix degradation, such as tissue inhibitor of metalloproteinases-1 and matrix metalloproteinase-9. CONCLUSIONS: The HA/PLGA/BLEED(®) association can be used as a bone graft to aid bone repair, as it is capable of modulating expression of important genes at this stage of the repair process. |
---|