Cargando…
Controlled SPION-Exosomes Loaded with Quercetin Preserves Pancreatic Beta Cell Survival and Function in Type 2 Diabetes Mellitus
INTRODUCTION: Quercetin has an ideal therapeutic effect on islet function improvement in type 2 diabetes mellitus (T2DM). However, the therapeutic benefit of quercetin is hindered by its poor bioavailability and limited concentration in pancreatic islets. In this study, superparamagnetic iron oxide...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578181/ https://www.ncbi.nlm.nih.gov/pubmed/37849640 http://dx.doi.org/10.2147/IJN.S422416 |
Sumario: | INTRODUCTION: Quercetin has an ideal therapeutic effect on islet function improvement in type 2 diabetes mellitus (T2DM). However, the therapeutic benefit of quercetin is hindered by its poor bioavailability and limited concentration in pancreatic islets. In this study, superparamagnetic iron oxide nanoparticle (SPION)-modified exosomes were prepared to load quercetin, hoping to endow quercetin with enhanced water solubility and active targeting capacity with the help of magnetic force (MF). METHODS: Transferrin-modified SPIONs (Tf-SPIONs) were synthesized by exploiting N-hydroxysuccinimidyl (NHS) conjugation chemistry, and quercetin-loaded exosomes (Qu-exosomes) were acquired by electroporation. Tf-SPION-modified quercetin-loaded exosomes (Qu-exosome-SPIONs) were generated by the self-assembly of transferrin (Tf) and the transferrin receptor (TfR). The solubility of quercetin was determined by high-performance liquid chromatography (HPLC) analysis. The pancreatic islet targeting capacity and insulin secretagogue and antiapoptotic activities of Qu-exosome-SPIONs/MF were evaluated both in vitro and in vivo. RESULTS: The Qu-exosome-SPIONs were well constructed and harvested by magnetic separation with a uniform size and shape in a diameter of approximately 86.2 nm. The water solubility of quercetin increased 1.97-fold when loaded into the SPION-modified exosomes. The application of SPIONs/MF endowed the Qu-exosomes with favorable targeting capacity. In vitro studies showed that Qu-exosome-SPIONs/MF more effectively inhibited or attenuated β cell apoptosis and promoted insulin secretion in response to elevated glucose (GLC) compared with quercetin or Qu-exosome-SPIONs. In vivo studies demonstrated that Qu-exosome-SPIONs/MF displayed an ideal pancreatic islet targeting capacity, thereby leading to the restoration of islet function. CONCLUSION: The Qu-exosome-SPIONs/MF nano-delivery system significantly enhanced the quercetin concentration in pancreatic islets and thereby improved pancreatic islet protection. |
---|