Cargando…

Free Energy Simulations of Receptor-Binding Domain Opening of the SARS-CoV-2 Spike Indicate a Barrierless Transition with Slow Conformational Motions

[Image: see text] Infection by sarbecoviruses begins with the attachment of the homotrimeric viral “spike” protein to the angiotensin-converting enzyme 2 receptor on the surface of mammalian cells. This requires one or more receptor-binding domains (RBDs) to be in the open (up) position. Here, we pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Ovchinnikov, Victor, Karplus, Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578350/
https://www.ncbi.nlm.nih.gov/pubmed/37756691
http://dx.doi.org/10.1021/acs.jpcb.3c05236
Descripción
Sumario:[Image: see text] Infection by sarbecoviruses begins with the attachment of the homotrimeric viral “spike” protein to the angiotensin-converting enzyme 2 receptor on the surface of mammalian cells. This requires one or more receptor-binding domains (RBDs) to be in the open (up) position. Here, we present the results of long molecular dynamics simulations with umbrella sampling (US) to compute a one-dimensional free energy profile of RBD opening/closing and the associated transition times. After ≃3.58μs of simulation time per US window (∼229 μs in total), which was required to approach trajectory decorrelation, the computed free energy profile was found to be without large barriers. This suggests that the RBD diffuses between the open and closed positions without significant energetic hindrance. This interpretation appears consistent with experiments but is at odds with some previous simulations. Modeling the RBD motion as diffusive dynamics along the computed free energy profile, we find that the overall time required for the transition is only about 2 μs, which is 5 orders of magnitude shorter than experimentally measured transition times. We speculate that the most likely reason for the transition time mismatch is our use of very short glycans, which was required to make the simulations performed here feasible. Despite the long simulation times, the final free energy profile is not fully converged with statistical errors of ≃1.16 kcal/mol, which were found to be consistent with the slow time decay in the autocorrelation of the conformational motions of the protein. The simulation lengths that would be required to obtain fully converged results remain unknown, but the present calculations would benefit from at least an order-of-magnitude extension.