Cargando…
An image-based modeling framework for predicting spatiotemporal brain cancer biology within individual patients
Imaging is central to the clinical surveillance of brain tumors yet it provides limited insight into a tumor’s underlying biology. Machine learning and other mathematical modeling approaches can leverage paired magnetic resonance images and image-localized tissue samples to predict almost any charac...
Autores principales: | Bond, Kamila M., Curtin, Lee, Ranjbar, Sara, Afshari, Ariana E., Hu, Leland S., Rubin, Joshua B., Swanson, Kristin R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578440/ https://www.ncbi.nlm.nih.gov/pubmed/37849813 http://dx.doi.org/10.3389/fonc.2023.1185738 |
Ejemplares similares
-
Shape matters: morphological metrics of glioblastoma imaging abnormalities as biomarkers of prognosis
por: Curtin, Lee, et al.
Publicado: (2021) -
Weakly Supervised Skull Stripping of Magnetic Resonance Imaging of Brain Tumor Patients
por: Ranjbar, Sara, et al.
Publicado: (2022) -
Assessment of Prognostic Value of Cystic Features in Glioblastoma Relative to Sex and Treatment With Standard-of-Care
por: Curtin, Lee, et al.
Publicado: (2020) -
Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications
por: Comba, Andrea, et al.
Publicado: (2021) -
Agent-Based Spatiotemporal Simulation of Biomolecular Systems within the Open Source MASON Framework
por: Pérez-Rodríguez, Gael, et al.
Publicado: (2015)