Cargando…
Attentive transformer deep learning algorithm for intrusion detection on IoT systems using automatic Xplainable feature selection
Recent years have witnessed an in-depth proliferation of the Internet of Things (IoT) and Industrial Internet of Things (IIoT) systems linked to Industry 4.0 technology. The increasing rate of IoT device usage is associated with rising security risks resulting from malicious network flows during dat...
Autores principales: | Zegarra Rodríguez, Demóstenes, Daniel Okey, Ogobuchi, Maidin, Siti Sarah, Umoren Udo, Ekikere, Kleinschmidt, João Henrique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10578588/ https://www.ncbi.nlm.nih.gov/pubmed/37844095 http://dx.doi.org/10.1371/journal.pone.0286652 |
Ejemplares similares
-
BoostedEnML: Efficient Technique for Detecting Cyberattacks in IoT Systems Using Boosted Ensemble Machine Learning
por: Okey, Ogobuchi Daniel, et al.
Publicado: (2022) -
ROAST-IoT: A Novel Range-Optimized Attention Convolutional Scattered Technique for Intrusion Detection in IoT Networks
por: Mahalingam, Anandaraj, et al.
Publicado: (2023) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
Generating Datasets for Anomaly-Based Intrusion Detection Systems in IoT and Industrial IoT Networks
por: Essop, Ismael, et al.
Publicado: (2021) -
Intrusion Detection in IoT Using Deep Learning
por: Banaamah, Alaa Mohammed, et al.
Publicado: (2022)