Cargando…
Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies
Temporal parameters during swallowing are analyzed for objective and quantitative evaluation of videofluoroscopic swallowing studies (VFSS). Manual analysis by clinicians is time-consuming, complicated and prone to human error during interpretation; therefore, automated analysis using deep learning...
Autores principales: | Jeong, Seong Yun, Kim, Jeong Min, Park, Ji Eun, Baek, Seung Jun, Yang, Seung Nam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579219/ https://www.ncbi.nlm.nih.gov/pubmed/37845272 http://dx.doi.org/10.1038/s41598-023-44802-3 |
Ejemplares similares
-
Use of Videofluoroscopic Swallowing Study in Patients with Aspiration Pneumonia
por: Park, Seunglee, et al.
Publicado: (2012) -
Esophageal Motility Disorders in Patients With Esophageal Barium Residue After Videofluoroscopic Swallowing Study
por: Park, Jintae, et al.
Publicado: (2022) -
Characteristics of Patients With Esophageal Dysphagia Assessed by Chest X-Ray Imaging After Videofluoroscopic Swallowing Study
por: Min, Young-Kee, et al.
Publicado: (2020) -
Comparison of Videofluoroscopic Swallowing Study and Radionuclide Salivagram for Aspiration Pneumonia in Children With Swallowing Difficulty
por: Kim, Go Eun, et al.
Publicado: (2018) -
Deep Learning Analysis to Automatically Detect the Presence of Penetration or Aspiration in Videofluoroscopic Swallowing Study
por: Kim, Jeoung Kun, et al.
Publicado: (2022)