Cargando…

Brain-computer interface for robot control with eye artifacts for assistive applications

Human-robot interaction is a rapidly developing field and robots have been taking more active roles in our daily lives. Patient care is one of the fields in which robots are becoming more present, especially for people with disabilities. People with neurodegenerative disorders might not consciously...

Descripción completa

Detalles Bibliográficos
Autores principales: Karas, Kaan, Pozzi, Luca, Pedrocchi, Alessandra, Braghin, Francesco, Roveda, Loris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579221/
https://www.ncbi.nlm.nih.gov/pubmed/37845318
http://dx.doi.org/10.1038/s41598-023-44645-y
Descripción
Sumario:Human-robot interaction is a rapidly developing field and robots have been taking more active roles in our daily lives. Patient care is one of the fields in which robots are becoming more present, especially for people with disabilities. People with neurodegenerative disorders might not consciously or voluntarily produce movements other than those involving the eyes or eyelids. In this context, Brain-Computer Interface (BCI) systems present an alternative way to communicate or interact with the external world. In order to improve the lives of people with disabilities, this paper presents a novel BCI to control an assistive robot with user’s eye artifacts. In this study, eye artifacts that contaminate the electroencephalogram (EEG) signals are considered a valuable source of information thanks to their high signal-to-noise ratio and intentional generation. The proposed methodology detects eye artifacts from EEG signals through characteristic shapes that occur during the events. The lateral movements are distinguished by their ordered peak and valley formation and the opposite phase of the signals measured at F7 and F8 channels. This work, as far as the authors’ knowledge, is the first method that used this behavior to detect lateral eye movements. For the blinks detection, a double-thresholding method is proposed by the authors to catch both weak blinks as well as regular ones, differentiating itself from the other algorithms in the literature that normally use only one threshold. Real-time detected events with their virtual time stamps are fed into a second algorithm, to further distinguish between double and quadruple blinks from single blinks occurrence frequency. After testing the algorithm offline and in realtime, the algorithm is implemented on the device. The created BCI was used to control an assistive robot through a graphical user interface. The validation experiments including 5 participants prove that the developed BCI is able to control the robot.