Cargando…
A modification in Weibull parameters to achieve a more accurate probability distribution function in fatigue applications
Risk evaluation for fatigue failure of the engineering components is an important aspect of the engineering design. Weibull distributions are often used in preference to the log-normal distribution to analyze probability aspects of fatigue results. This study presents a probabilistic model for calcu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579224/ https://www.ncbi.nlm.nih.gov/pubmed/37845362 http://dx.doi.org/10.1038/s41598-023-44907-9 |
Sumario: | Risk evaluation for fatigue failure of the engineering components is an important aspect of the engineering design. Weibull distributions are often used in preference to the log-normal distribution to analyze probability aspects of fatigue results. This study presents a probabilistic model for calculating Weibull distribution parameters to reduce the effect of percentage discretization error of experimental fatigue life and R–S–N curves for three reliability levels. By considering any result of standard fatigue test as an equivalent Weibull distribution, artificial data are generated and the accuracy of common Weibull distribution model can be improved. The results show error reduction in the Kolmogorov–Smirnov test and R-square values. Also, the Basquin model is used for different reliability levels with the same error order for risk evaluation of fatigue failure. The coefficient of variation for fatigue life increases at higher stress levels and has a linear relation with stress level for a high-cycle fatigue regime. |
---|