Cargando…

Detection and classification of adult epilepsy using hybrid deep learning approach

The electroencephalogram (EEG) has emerged over the past few decades as one of the key tools used by clinicians to detect seizures and other neurological abnormalities of the human brain. The proper diagnosis of epilepsy is crucial due to its distinctive nature and the subsequent negative effects of...

Descripción completa

Detalles Bibliográficos
Autores principales: Srinivasan, Saravanan, Dayalane , Sundaranarayana, Mathivanan, Sandeep kumar, Rajadurai, Hariharan, Jayagopal, Prabhu, Dalu, Gemmachis Teshite
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579259/
https://www.ncbi.nlm.nih.gov/pubmed/37845403
http://dx.doi.org/10.1038/s41598-023-44763-7
Descripción
Sumario:The electroencephalogram (EEG) has emerged over the past few decades as one of the key tools used by clinicians to detect seizures and other neurological abnormalities of the human brain. The proper diagnosis of epilepsy is crucial due to its distinctive nature and the subsequent negative effects of epileptic seizures on patients. The classification of minimally pre-processed, raw multichannel EEG signal recordings is the foundation of this article’s unique method for identifying seizures in pre-adult patients. The new method makes use of the automatic feature learning capabilities of a three-dimensional deep convolution auto-encoder (3D-DCAE) associated with a neural network-based classifier to build an integrated framework that endures training in a supervised manner to attain the highest level of classification precision among brain state signals, both ictal and interictal. A pair of models were created and evaluated for testing and assessing our method, utilizing three distinct EEG data section lengths, and a tenfold cross-validation procedure. Based on five evaluation criteria, the labelled hybrid convolutional auto-encoder (LHCAE) model, which utilizes a classifier based on bidirectional long short-term memory (Bi-LSTM) and an EEG segment length of 4 s, had the best efficiency. This proposed model has 99.08 ± 0.54% accuracy, 99.21 ± 0.50% sensitivity, 99.11 ± 0.57% specificity, 99.09 ± 0.55% precision, and an F1-score of 99.16 ± 0.58%, according to the publicly available Children’s Hospital Boston (CHB) dataset. Based on the obtained outcomes, the proposed seizure classification model outperforms the other state-of-the-art method’s performance in the same dataset.