Cargando…
h-Analysis and data-parallel physics-informed neural networks
We explore the data-parallel acceleration of physics-informed machine learning (PIML) schemes, with a focus on physics-informed neural networks (PINNs) for multiple graphics processing units (GPUs) architectures. In order to develop scale-robust and high-throughput PIML models for sophisticated appl...
Autores principales: | Escapil-Inchauspé, Paul, Ruz, Gonzalo A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579276/ https://www.ncbi.nlm.nih.gov/pubmed/37845265 http://dx.doi.org/10.1038/s41598-023-44541-5 |
Ejemplares similares
-
Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
por: Berrone, S., et al.
Publicado: (2023) -
Material Data Identification in an Induction Hardening Test Rig with Physics-Informed Neural Networks
por: Asadzadeh, Mohammad Zhian, et al.
Publicado: (2023) -
Protein Design Using Physics Informed Neural Networks
por: Omar, Sara Ibrahim, et al.
Publicado: (2023) -
Predicting Voltammetry Using Physics-Informed Neural
Networks
por: Chen, Haotian, et al.
Publicado: (2022) -
Neutral space analysis for a Boolean network model of the fission yeast cell cycle network
por: Ruz, Gonzalo A, et al.
Publicado: (2014)