Cargando…
Circular-SWAT for deep learning based diagnostic classification of Alzheimer's disease: application to metabolome data
BACKGROUND: Deep learning has shown potential in various scientific domains but faces challenges when applied to complex, high-dimensional multi-omics data. Alzheimer's Disease (AD) is a neurodegenerative disorder that lacks targeted therapeutic options. This study introduces the Circular-Slidi...
Autores principales: | Jo, Taeho, Kim, Junpyo, Bice, Paula, Huynh, Kevin, Wang, Tingting, Arnold, Matthias, Meikle, Peter J., Giles, Corey, Kaddurah-Daouk, Rima, Saykin, Andrew J., Nho, Kwangsik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579282/ https://www.ncbi.nlm.nih.gov/pubmed/37806288 http://dx.doi.org/10.1016/j.ebiom.2023.104820 |
Ejemplares similares
-
Sets of coregulated serum lipids are associated with Alzheimer's disease pathophysiology
por: Barupal, Dinesh Kumar, et al.
Publicado: (2019) -
Circulating lipid profiles are associated with cross-sectional and longitudinal changes of central biomarkers for Alzheimer’s disease
por: Kim, Jun Pyo, et al.
Publicado: (2023) -
Deep Learning in Alzheimer's Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data
por: Jo, Taeho, et al.
Publicado: (2019) -
Deep learning detection of informative features in tau PET for Alzheimer’s disease classification
por: Jo, Taeho, et al.
Publicado: (2020) -
Bile acids targeted metabolomics and medication classification data in the ADNI1 and ADNIGO/2 cohorts
por: St. John-Williams, Lisa, et al.
Publicado: (2019)