Cargando…
Quality control prediction of electrolytic copper using novel hybrid nonlinear analysis algorithm
Traditional linear regression and neural network models demonstrate suboptimal fit and lower predictive accuracy while the quality of electrolytic copper is estimated. A more dependable and accurate model is essential for these challenges. Notably, the maximum information coefficient was employed in...
Autores principales: | Su, Yuzhen, Ye, Weichuan, Yang, Kai, Li, Meng, He, Zhaohui, Xiao, Qingtai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579309/ https://www.ncbi.nlm.nih.gov/pubmed/37845268 http://dx.doi.org/10.1038/s41598-023-44546-0 |
Ejemplares similares
-
A novel hybrid hunger games algorithm for intrusion detection systems based on nonlinear regression modeling
por: Mohammadi, Shahriar, et al.
Publicado: (2023) -
Unravelling rechargeable zinc-copper batteries by a chloride shuttle in a biphasic electrolyte
por: Xu, Chen, et al.
Publicado: (2023) -
Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis
por: Yang, Chao, et al.
Publicado: (2009) -
Analysis of Polynomial Nonlinearity Based on Measures of Nonlinearity Algorithms
por: Mallick, Mahendra, et al.
Publicado: (2020) -
Nonlinear optical characterization of copper oxide nanoellipsoids
por: Boltaev, Ganjaboy S., et al.
Publicado: (2019)