Cargando…
Computer-aided diagnosis of chest X-ray for COVID-19 diagnosis in external validation study by radiologists with and without deep learning system
To evaluate the diagnostic performance of our deep learning (DL) model of COVID-19 and investigate whether the diagnostic performance of radiologists was improved by referring to our model. Our datasets contained chest X-rays (CXRs) for the following three categories: normal (NORMAL), non-COVID-19 p...
Autores principales: | Miyazaki, Aki, Ikejima, Kengo, Nishio, Mizuho, Yabuta, Minoru, Matsuo, Hidetoshi, Onoue, Koji, Matsunaga, Takaaki, Nishioka, Eiko, Kono, Atsushi, Yamada, Daisuke, Oba, Ken, Ishikura, Reiichi, Murakami, Takamichi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579343/ https://www.ncbi.nlm.nih.gov/pubmed/37845348 http://dx.doi.org/10.1038/s41598-023-44818-9 |
Ejemplares similares
-
Bayesian multidimensional nominal response model for observer study of radiologists
por: Nishio, Mizuho, et al.
Publicado: (2022) -
Deep learning model for the automatic classification of COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy: a multi-center retrospective study
por: Nishio, Mizuho, et al.
Publicado: (2022) -
Comparison between pystan and numpyro in Bayesian item response theory: evaluation of agreement of estimated latent parameters and sampling performance
por: Nishio, Mizuho, et al.
Publicado: (2023) -
Automatic classification between COVID-19 pneumonia, non-COVID-19 pneumonia, and the healthy on chest X-ray image: combination of data augmentation methods
por: Nishio, Mizuho, et al.
Publicado: (2020) -
Unsupervised-learning-based method for chest MRI–CT transformation using structure constrained unsupervised generative attention networks
por: Matsuo, Hidetoshi, et al.
Publicado: (2022)