Cargando…

An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter

Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas te...

Descripción completa

Detalles Bibliográficos
Autores principales: Casini, Isabella, McCubbin, Tim, Esquivel-Elizondo, Sofia, Luque, Guillermo G., Evseeva, Daria, Fink, Christian, Beblawy, Sebastian, Youngblut, Nicholas D., Aristilde, Ludmilla, Huson, Daniel H., Dräger, Andreas, Ley, Ruth E., Marcellin, Esteban, Angenent, Largus T., Molitor, Bastian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579436/
https://www.ncbi.nlm.nih.gov/pubmed/37854702
http://dx.doi.org/10.1016/j.isci.2023.108016
_version_ 1785121724840280064
author Casini, Isabella
McCubbin, Tim
Esquivel-Elizondo, Sofia
Luque, Guillermo G.
Evseeva, Daria
Fink, Christian
Beblawy, Sebastian
Youngblut, Nicholas D.
Aristilde, Ludmilla
Huson, Daniel H.
Dräger, Andreas
Ley, Ruth E.
Marcellin, Esteban
Angenent, Largus T.
Molitor, Bastian
author_facet Casini, Isabella
McCubbin, Tim
Esquivel-Elizondo, Sofia
Luque, Guillermo G.
Evseeva, Daria
Fink, Christian
Beblawy, Sebastian
Youngblut, Nicholas D.
Aristilde, Ludmilla
Huson, Daniel H.
Dräger, Andreas
Ley, Ruth E.
Marcellin, Esteban
Angenent, Largus T.
Molitor, Bastian
author_sort Casini, Isabella
collection PubMed
description Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three Methanothermobacter strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates. Using an integrated systems biology approach, we identified differences in formate anabolism between the strains and revealed that formate anabolism influences the diversion of carbon between biomass and methane. This finding, together with the omics datasets and the metabolic models we generated, can be implemented for biotechnological applications of Methanothermobacter in power-to-gas technology, and as a perspective, for value-added chemical production.
format Online
Article
Text
id pubmed-10579436
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-105794362023-10-18 An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter Casini, Isabella McCubbin, Tim Esquivel-Elizondo, Sofia Luque, Guillermo G. Evseeva, Daria Fink, Christian Beblawy, Sebastian Youngblut, Nicholas D. Aristilde, Ludmilla Huson, Daniel H. Dräger, Andreas Ley, Ruth E. Marcellin, Esteban Angenent, Largus T. Molitor, Bastian iScience Article Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three Methanothermobacter strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates. Using an integrated systems biology approach, we identified differences in formate anabolism between the strains and revealed that formate anabolism influences the diversion of carbon between biomass and methane. This finding, together with the omics datasets and the metabolic models we generated, can be implemented for biotechnological applications of Methanothermobacter in power-to-gas technology, and as a perspective, for value-added chemical production. Elsevier 2023-09-22 /pmc/articles/PMC10579436/ /pubmed/37854702 http://dx.doi.org/10.1016/j.isci.2023.108016 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Casini, Isabella
McCubbin, Tim
Esquivel-Elizondo, Sofia
Luque, Guillermo G.
Evseeva, Daria
Fink, Christian
Beblawy, Sebastian
Youngblut, Nicholas D.
Aristilde, Ludmilla
Huson, Daniel H.
Dräger, Andreas
Ley, Ruth E.
Marcellin, Esteban
Angenent, Largus T.
Molitor, Bastian
An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter
title An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter
title_full An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter
title_fullStr An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter
title_full_unstemmed An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter
title_short An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter
title_sort integrated systems biology approach reveals differences in formate metabolism in the genus methanothermobacter
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579436/
https://www.ncbi.nlm.nih.gov/pubmed/37854702
http://dx.doi.org/10.1016/j.isci.2023.108016
work_keys_str_mv AT casiniisabella anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT mccubbintim anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT esquivelelizondosofia anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT luqueguillermog anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT evseevadaria anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT finkchristian anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT beblawysebastian anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT youngblutnicholasd anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT aristildeludmilla anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT husondanielh anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT dragerandreas anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT leyruthe anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT marcellinesteban anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT angenentlargust anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT molitorbastian anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT casiniisabella integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT mccubbintim integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT esquivelelizondosofia integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT luqueguillermog integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT evseevadaria integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT finkchristian integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT beblawysebastian integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT youngblutnicholasd integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT aristildeludmilla integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT husondanielh integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT dragerandreas integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT leyruthe integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT marcellinesteban integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT angenentlargust integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter
AT molitorbastian integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter