Cargando…
An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter
Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas te...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579436/ https://www.ncbi.nlm.nih.gov/pubmed/37854702 http://dx.doi.org/10.1016/j.isci.2023.108016 |
_version_ | 1785121724840280064 |
---|---|
author | Casini, Isabella McCubbin, Tim Esquivel-Elizondo, Sofia Luque, Guillermo G. Evseeva, Daria Fink, Christian Beblawy, Sebastian Youngblut, Nicholas D. Aristilde, Ludmilla Huson, Daniel H. Dräger, Andreas Ley, Ruth E. Marcellin, Esteban Angenent, Largus T. Molitor, Bastian |
author_facet | Casini, Isabella McCubbin, Tim Esquivel-Elizondo, Sofia Luque, Guillermo G. Evseeva, Daria Fink, Christian Beblawy, Sebastian Youngblut, Nicholas D. Aristilde, Ludmilla Huson, Daniel H. Dräger, Andreas Ley, Ruth E. Marcellin, Esteban Angenent, Largus T. Molitor, Bastian |
author_sort | Casini, Isabella |
collection | PubMed |
description | Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three Methanothermobacter strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates. Using an integrated systems biology approach, we identified differences in formate anabolism between the strains and revealed that formate anabolism influences the diversion of carbon between biomass and methane. This finding, together with the omics datasets and the metabolic models we generated, can be implemented for biotechnological applications of Methanothermobacter in power-to-gas technology, and as a perspective, for value-added chemical production. |
format | Online Article Text |
id | pubmed-10579436 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-105794362023-10-18 An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter Casini, Isabella McCubbin, Tim Esquivel-Elizondo, Sofia Luque, Guillermo G. Evseeva, Daria Fink, Christian Beblawy, Sebastian Youngblut, Nicholas D. Aristilde, Ludmilla Huson, Daniel H. Dräger, Andreas Ley, Ruth E. Marcellin, Esteban Angenent, Largus T. Molitor, Bastian iScience Article Methanogenesis allows methanogenic archaea to generate cellular energy for their growth while producing methane. Thermophilic hydrogenotrophic species of the genus Methanothermobacter have been recognized as robust biocatalysts for a circular carbon economy and are already applied in power-to-gas technology with biomethanation, which is a platform to store renewable energy and utilize captured carbon dioxide. Here, we generated curated genome-scale metabolic reconstructions for three Methanothermobacter strains and investigated differences in the growth performance of these same strains in chemostat bioreactor experiments with hydrogen and carbon dioxide or formate as substrates. Using an integrated systems biology approach, we identified differences in formate anabolism between the strains and revealed that formate anabolism influences the diversion of carbon between biomass and methane. This finding, together with the omics datasets and the metabolic models we generated, can be implemented for biotechnological applications of Methanothermobacter in power-to-gas technology, and as a perspective, for value-added chemical production. Elsevier 2023-09-22 /pmc/articles/PMC10579436/ /pubmed/37854702 http://dx.doi.org/10.1016/j.isci.2023.108016 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Casini, Isabella McCubbin, Tim Esquivel-Elizondo, Sofia Luque, Guillermo G. Evseeva, Daria Fink, Christian Beblawy, Sebastian Youngblut, Nicholas D. Aristilde, Ludmilla Huson, Daniel H. Dräger, Andreas Ley, Ruth E. Marcellin, Esteban Angenent, Largus T. Molitor, Bastian An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter |
title | An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter |
title_full | An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter |
title_fullStr | An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter |
title_full_unstemmed | An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter |
title_short | An integrated systems biology approach reveals differences in formate metabolism in the genus Methanothermobacter |
title_sort | integrated systems biology approach reveals differences in formate metabolism in the genus methanothermobacter |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579436/ https://www.ncbi.nlm.nih.gov/pubmed/37854702 http://dx.doi.org/10.1016/j.isci.2023.108016 |
work_keys_str_mv | AT casiniisabella anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT mccubbintim anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT esquivelelizondosofia anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT luqueguillermog anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT evseevadaria anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT finkchristian anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT beblawysebastian anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT youngblutnicholasd anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT aristildeludmilla anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT husondanielh anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT dragerandreas anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT leyruthe anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT marcellinesteban anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT angenentlargust anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT molitorbastian anintegratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT casiniisabella integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT mccubbintim integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT esquivelelizondosofia integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT luqueguillermog integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT evseevadaria integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT finkchristian integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT beblawysebastian integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT youngblutnicholasd integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT aristildeludmilla integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT husondanielh integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT dragerandreas integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT leyruthe integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT marcellinesteban integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT angenentlargust integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter AT molitorbastian integratedsystemsbiologyapproachrevealsdifferencesinformatemetabolisminthegenusmethanothermobacter |