Cargando…
Multi-task learning for predicting synergistic drug combinations based on auto-encoding multi-relational graphs
Combinatorial drug therapy is a promising approach for treating complex diseases by combining drugs with synergistic effects. However, predicting effective drug combinations is challenging due to the complexity of biological systems and the limited understanding of pathophysiological mechanisms and...
Autores principales: | Shan, Wenyu, Shen, Cong, Luo, Lingyun, Ding, Pingjian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579440/ https://www.ncbi.nlm.nih.gov/pubmed/37854693 http://dx.doi.org/10.1016/j.isci.2023.108020 |
Ejemplares similares
-
A complete graph-based approach with multi-task learning for predicting synergistic drug combinations
por: Wang, Xiaowen, et al.
Publicado: (2023) -
Predicting anticancer synergistic drug combinations based on multi-task learning
por: Chen, Danyi, et al.
Publicado: (2023) -
Self-Weighted Multi-Kernel Multi-Label Learning for Potential miRNA-Disease Association Prediction
por: Pan, Zhenxia, et al.
Publicado: (2019) -
A Multi-Task Representation Learning Architecture for Enhanced Graph Classification
por: Xie, Yu, et al.
Publicado: (2020) -
Multi-Task Learning and Improved TextRank for Knowledge Graph Completion
por: Tian, Hao, et al.
Publicado: (2022)