Cargando…
An explainable machine learning model for predicting the outcome of ischemic stroke after mechanical thrombectomy
BACKGROUND: There is high variability in the clinical outcomes of patients with acute ischemic stroke (AIS) after mechanical thrombectomy (MT). METHODS: 217 consecutive patients with anterior circulation large vessel occlusion who underwent MT between August 2018 and January 2022 were analysed. The...
Autores principales: | Yao, Zhelv, Mao, Chenglu, Ke, Zhihong, Xu, Yun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579503/ https://www.ncbi.nlm.nih.gov/pubmed/36446552 http://dx.doi.org/10.1136/jnis-2022-019598 |
Ejemplares similares
-
Comparing Poor and Favorable Outcome Prediction With Machine Learning After Mechanical Thrombectomy in Acute Ischemic Stroke
por: Mutke, Matthias A., et al.
Publicado: (2022) -
Relationship between estimated glomerular filtration rate and outcome of ischemic stroke patients after mechanical thrombectomy
por: Yao, Zhelv, et al.
Publicado: (2021) -
Safety and Efficacy of Tirofiban Combined With Mechanical Thrombectomy Depend on Ischemic Stroke Etiology
por: Sun, Chao, et al.
Publicado: (2019) -
Predicting futile recanalization, malignant cerebral edema, and cerebral herniation using intelligible ensemble machine learning following mechanical thrombectomy for acute ischemic stroke
por: Zeng, Weixiong, et al.
Publicado: (2022) -
Pre-thrombectomy prognostic prediction of large-vessel ischemic stroke using machine learning: A systematic review and meta-analysis
por: Zeng, Minyan, et al.
Publicado: (2022)