Cargando…

Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2—Metabolome, immunome, synaptome

The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, a...

Descripción completa

Detalles Bibliográficos
Autores principales: Reece, Albert Stuart, Hulse, Gary Kenneth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579598/
https://www.ncbi.nlm.nih.gov/pubmed/37854446
http://dx.doi.org/10.3389/fpsyt.2023.1182536
_version_ 1785121757518102528
author Reece, Albert Stuart
Hulse, Gary Kenneth
author_facet Reece, Albert Stuart
Hulse, Gary Kenneth
author_sort Reece, Albert Stuart
collection PubMed
description The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
format Online
Article
Text
id pubmed-10579598
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-105795982023-10-18 Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2—Metabolome, immunome, synaptome Reece, Albert Stuart Hulse, Gary Kenneth Front Psychiatry Psychiatry The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure. Frontiers Media S.A. 2023-10-03 /pmc/articles/PMC10579598/ /pubmed/37854446 http://dx.doi.org/10.3389/fpsyt.2023.1182536 Text en Copyright © 2023 Reece and Hulse. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Psychiatry
Reece, Albert Stuart
Hulse, Gary Kenneth
Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2—Metabolome, immunome, synaptome
title Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2—Metabolome, immunome, synaptome
title_full Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2—Metabolome, immunome, synaptome
title_fullStr Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2—Metabolome, immunome, synaptome
title_full_unstemmed Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2—Metabolome, immunome, synaptome
title_short Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2—Metabolome, immunome, synaptome
title_sort perturbation of 3d nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2—metabolome, immunome, synaptome
topic Psychiatry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579598/
https://www.ncbi.nlm.nih.gov/pubmed/37854446
http://dx.doi.org/10.3389/fpsyt.2023.1182536
work_keys_str_mv AT reecealbertstuart perturbationof3dnucleararchitectureepigenomicaginganddysregulationandcannabinoidsynaptopathyreconfiguresconceptualizationofcannabinoidpathophysiologypart2metabolomeimmunomesynaptome
AT hulsegarykenneth perturbationof3dnucleararchitectureepigenomicaginganddysregulationandcannabinoidsynaptopathyreconfiguresconceptualizationofcannabinoidpathophysiologypart2metabolomeimmunomesynaptome