Cargando…

A syndrome differentiation model of TCM based on multi-label deep forest using biomedical text mining

Syndrome differentiation and treatment is the basic principle of traditional Chinese medicine (TCM) to recognize and treat diseases. Accurate syndrome differentiation can provide a reliable basis for treatment, therefore, establishing a scientific intelligent syndrome differentiation method is of gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Gong, Lejun, Jiang, Jindou, Chen, Shiqi, Qi, Mingming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579813/
https://www.ncbi.nlm.nih.gov/pubmed/37854059
http://dx.doi.org/10.3389/fgene.2023.1272016
Descripción
Sumario:Syndrome differentiation and treatment is the basic principle of traditional Chinese medicine (TCM) to recognize and treat diseases. Accurate syndrome differentiation can provide a reliable basis for treatment, therefore, establishing a scientific intelligent syndrome differentiation method is of great significance to the modernization of TCM. With the development of biomdical text mining technology, TCM has entered the era of intelligence that based on data, and model training increasingly relies on the large-scale labeled data. However, it is difficult to form a large standard data set in the field of TCM due to the low degree of standardization of TCM data collection and the privacy protection of patients’ medical records. To solve the above problem, a multi-label deep forest model based on an improved multi-label ReliefF feature selection algorithm, ML-PRDF, is proposed to enhance the representativeness of features within the model, express the original information with fewer features, and achieve optimal classification accuracy, while alleviating the problem of high data processing cost of deep forest models and achieving effective TCM discriminative analysis under small samples. The results show that the proposed model finally outperforms other multi-label classification models in terms of multi-label evaluation criteria, and has higher accuracy in the TCM syndrome differentiation problem compared with the traditional multi-label deep forest, and the comparative study shows that the use of PCC-MLRF algorithm for feature selection can better select representative features.