Cargando…
Identifying potential biomarkers for non-obstructive azoospermia using WGCNA and machine learning algorithms
OBJECTIVE: The cause and mechanism of non-obstructive azoospermia (NOA) is complicated; therefore, an effective therapy strategy is yet to be developed. This study aimed to analyse the pathogenesis of NOA at the molecular biological level and to identify the core regulatory genes, which could be uti...
Autores principales: | Tang, Qizhen, Su, Quanxin, Wei, Letian, Wang, Kenan, Jiang, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579891/ https://www.ncbi.nlm.nih.gov/pubmed/37854191 http://dx.doi.org/10.3389/fendo.2023.1108616 |
Ejemplares similares
-
Screening of potential biomarkers of system lupus erythematosus based on WGCNA and machine learning algorithms
por: Li, Xiaojian, et al.
Publicado: (2023) -
Screening of novel biomarkers for breast cancer based on WGCNA and multiple machine learning algorithms
por: Jin, Xiaohu, et al.
Publicado: (2023) -
Novel mutations of TEX11 are associated with non-obstructive azoospermia
por: Song, Jian, et al.
Publicado: (2023) -
Identification and verification of diagnostic biomarkers in recurrent pregnancy loss via machine learning algorithm and WGCNA
por: Wei, Changqiang, et al.
Publicado: (2023) -
The gene regulatory role of non-coding RNAs in non-obstructive azoospermia
por: Zhou, Guanqing, et al.
Publicado: (2022)