Cargando…
Specific genetic aberrations of parathyroid in Chinese patients with tertiary hyperparathyroidism using whole-exome sequencing
BACKGROUND: Tertiary hyperparathyroidism (THPT) is a peculiar subtype of hyperparathyroidism that usually develops from chronic kidney disease (CKD) and persists even after kidney transplantation. Unlike its precursor, secondary hyperparathyroidism (SHPT), THPT is characterized by uncontrolled high...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579901/ https://www.ncbi.nlm.nih.gov/pubmed/37854190 http://dx.doi.org/10.3389/fendo.2023.1221060 |
_version_ | 1785121831015940096 |
---|---|
author | Li, Lei Sheng, Qixuan Zeng, Huajin Li, Wei Wang, Qiang Ma, Guanjun Xu, Xinyun Qiu, Ming Zhang, Wei Shan, Chengxiang |
author_facet | Li, Lei Sheng, Qixuan Zeng, Huajin Li, Wei Wang, Qiang Ma, Guanjun Xu, Xinyun Qiu, Ming Zhang, Wei Shan, Chengxiang |
author_sort | Li, Lei |
collection | PubMed |
description | BACKGROUND: Tertiary hyperparathyroidism (THPT) is a peculiar subtype of hyperparathyroidism that usually develops from chronic kidney disease (CKD) and persists even after kidney transplantation. Unlike its precursor, secondary hyperparathyroidism (SHPT), THPT is characterized by uncontrolled high levels of calcium in the blood, which suggests the monoclonal or oligoclonal proliferation of parathyroid cells. However, the molecular abnormalities leading to THPT have not yet been fully understood. METHODS: In this study, we analyzed DNA samples from hyperplastic parathyroid and corresponding blood cells of 11 patients with THPT using whole-exome sequencing (WES). We identified somatic single nucleotide variants (SNV) and insertions or deletions variants (INDEL) and performed driver mutation analysis, KEGG pathway, and GO functional enrichment analysis. To confirm the impact of selected driver mutated genes, we also tested their expression level in these samples using qRT-PCR. RESULTS: Following quality control and mutation filtering, we identified 17,401 mutations, comprising 6690 missense variants, 3078 frameshift variants, 2005 stop-gained variants, and 1630 synonymous variants. Copy number variants (CNV) analysis showed that chromosome 22 copy number deletion was frequently observed in 6 samples. Driver mutation analysis identified 179 statistically significant mutated genes, including recurrent missense mutations on TBX20, ATAD5, ZNF669, and NOX3 genes in 3 different patients. KEGG pathway analysis revealed two enriched pathways: non-homologous end-joining and cell cycle, with a sole gene, PRKDC, involved. GO analysis demonstrated significant enrichment of various cellular components and cytobiological processes associated with four genes, including GO items of positive regulation of developmental growth, protein ubiquitination, and positive regulation of the apoptotic process. Compared to blood samples, THPT samples exhibited lower expression levels of PRKDC, TBX20, ATAD5, and NOX3 genes. THPT samples with exon mutations had relatively lower expression levels of PRKDC, TBX20, and NOX3 genes compared to those without mutations, although the difference was not statistically significant. CONCLUSION: This study provides a comprehensive landscape of the genetic characteristics of hyperplastic parathyroids in THPT, highlighting the involvement of multiple genes and pathways in the development and progression of this disease. The dominant mutations identified in our study depicted new insights into the pathogenesis and molecular characteristics of THPT. |
format | Online Article Text |
id | pubmed-10579901 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105799012023-10-18 Specific genetic aberrations of parathyroid in Chinese patients with tertiary hyperparathyroidism using whole-exome sequencing Li, Lei Sheng, Qixuan Zeng, Huajin Li, Wei Wang, Qiang Ma, Guanjun Xu, Xinyun Qiu, Ming Zhang, Wei Shan, Chengxiang Front Endocrinol (Lausanne) Endocrinology BACKGROUND: Tertiary hyperparathyroidism (THPT) is a peculiar subtype of hyperparathyroidism that usually develops from chronic kidney disease (CKD) and persists even after kidney transplantation. Unlike its precursor, secondary hyperparathyroidism (SHPT), THPT is characterized by uncontrolled high levels of calcium in the blood, which suggests the monoclonal or oligoclonal proliferation of parathyroid cells. However, the molecular abnormalities leading to THPT have not yet been fully understood. METHODS: In this study, we analyzed DNA samples from hyperplastic parathyroid and corresponding blood cells of 11 patients with THPT using whole-exome sequencing (WES). We identified somatic single nucleotide variants (SNV) and insertions or deletions variants (INDEL) and performed driver mutation analysis, KEGG pathway, and GO functional enrichment analysis. To confirm the impact of selected driver mutated genes, we also tested their expression level in these samples using qRT-PCR. RESULTS: Following quality control and mutation filtering, we identified 17,401 mutations, comprising 6690 missense variants, 3078 frameshift variants, 2005 stop-gained variants, and 1630 synonymous variants. Copy number variants (CNV) analysis showed that chromosome 22 copy number deletion was frequently observed in 6 samples. Driver mutation analysis identified 179 statistically significant mutated genes, including recurrent missense mutations on TBX20, ATAD5, ZNF669, and NOX3 genes in 3 different patients. KEGG pathway analysis revealed two enriched pathways: non-homologous end-joining and cell cycle, with a sole gene, PRKDC, involved. GO analysis demonstrated significant enrichment of various cellular components and cytobiological processes associated with four genes, including GO items of positive regulation of developmental growth, protein ubiquitination, and positive regulation of the apoptotic process. Compared to blood samples, THPT samples exhibited lower expression levels of PRKDC, TBX20, ATAD5, and NOX3 genes. THPT samples with exon mutations had relatively lower expression levels of PRKDC, TBX20, and NOX3 genes compared to those without mutations, although the difference was not statistically significant. CONCLUSION: This study provides a comprehensive landscape of the genetic characteristics of hyperplastic parathyroids in THPT, highlighting the involvement of multiple genes and pathways in the development and progression of this disease. The dominant mutations identified in our study depicted new insights into the pathogenesis and molecular characteristics of THPT. Frontiers Media S.A. 2023-10-03 /pmc/articles/PMC10579901/ /pubmed/37854190 http://dx.doi.org/10.3389/fendo.2023.1221060 Text en Copyright © 2023 Li, Sheng, Zeng, Li, Wang, Ma, Xu, Qiu, Zhang and Shan https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Li, Lei Sheng, Qixuan Zeng, Huajin Li, Wei Wang, Qiang Ma, Guanjun Xu, Xinyun Qiu, Ming Zhang, Wei Shan, Chengxiang Specific genetic aberrations of parathyroid in Chinese patients with tertiary hyperparathyroidism using whole-exome sequencing |
title | Specific genetic aberrations of parathyroid in Chinese patients with tertiary hyperparathyroidism using whole-exome sequencing |
title_full | Specific genetic aberrations of parathyroid in Chinese patients with tertiary hyperparathyroidism using whole-exome sequencing |
title_fullStr | Specific genetic aberrations of parathyroid in Chinese patients with tertiary hyperparathyroidism using whole-exome sequencing |
title_full_unstemmed | Specific genetic aberrations of parathyroid in Chinese patients with tertiary hyperparathyroidism using whole-exome sequencing |
title_short | Specific genetic aberrations of parathyroid in Chinese patients with tertiary hyperparathyroidism using whole-exome sequencing |
title_sort | specific genetic aberrations of parathyroid in chinese patients with tertiary hyperparathyroidism using whole-exome sequencing |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579901/ https://www.ncbi.nlm.nih.gov/pubmed/37854190 http://dx.doi.org/10.3389/fendo.2023.1221060 |
work_keys_str_mv | AT lilei specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing AT shengqixuan specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing AT zenghuajin specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing AT liwei specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing AT wangqiang specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing AT maguanjun specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing AT xuxinyun specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing AT qiuming specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing AT zhangwei specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing AT shanchengxiang specificgeneticaberrationsofparathyroidinchinesepatientswithtertiaryhyperparathyroidismusingwholeexomesequencing |