Cargando…
Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato
Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus sp...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Plant Pathology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580056/ https://www.ncbi.nlm.nih.gov/pubmed/37817491 http://dx.doi.org/10.5423/PPJ.OA.01.2023.0018 |
_version_ | 1785121865432301568 |
---|---|
author | Pengproh, Rattana Thanyasiriwat, Thanwanit Sangdee, Kusavadee Saengprajak, Juthaporn Kawicha, Praphat Sangdee, Aphidech |
author_facet | Pengproh, Rattana Thanyasiriwat, Thanwanit Sangdee, Kusavadee Saengprajak, Juthaporn Kawicha, Praphat Sangdee, Aphidech |
author_sort | Pengproh, Rattana |
collection | PubMed |
description | Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes. |
format | Online Article Text |
id | pubmed-10580056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Korean Society of Plant Pathology |
record_format | MEDLINE/PubMed |
spelling | pubmed-105800562023-10-18 Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato Pengproh, Rattana Thanyasiriwat, Thanwanit Sangdee, Kusavadee Saengprajak, Juthaporn Kawicha, Praphat Sangdee, Aphidech Plant Pathol J Research Article Recently, strategies for controlling Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of Fusarium wilt of tomato, focus on using effective biocontrol agents. In this study, an analysis of the biocontrol and plant growth promoting (PGP) attributes of 11 isolates of loamy soil Bacillus spp. has been conducted. Among them, the isolates B.PNR1 and B.PNR2 inhibited the mycelial growth of Fol by inducing abnormal fungal cell wall structures and cell wall collapse. Moreover, broad-spectrum activity against four other plant pathogenic fungi, F. oxysporum f. sp. cubense race 1 (Foc), Sclerotium rolfsii, Colletotrichum musae, and C. gloeosporioides were noted for these isolates. These two Bacillus isolates produced indole acetic acid, phosphate solubilization enzymes, and amylolytic and cellulolytic enzymes. In the pot experiment, the culture filtrate from B.PNR1 showed greater inhibition of the fungal pathogens and significantly promoted the growth of tomato plants more than those of the other treatments. Isolate B.PNR1, the best biocontrol and PGP, was identified as Bacillus stercoris by its 16S rRNA gene sequence and whole genome sequencing analysis (WGS). The WGS, through genome mining, confirmed that the B.PNR1 genome contained genes/gene cluster of a nonribosomal peptide synthetase/polyketide synthase, such as fengycin, surfactin, bacillaene, subtilosin A, bacilysin, and bacillibactin, which are involved in antagonistic and PGP activities. Therefore, our finding demonstrates the effectiveness of B. stercoris strain B.PNR1 as an antagonist and for plant growth promotion, highlighting the use of this microorganism as a biocontrol agent against the Fusarium wilt pathogen and PGP abilities in tomatoes. Korean Society of Plant Pathology 2023-10 2023-10-01 /pmc/articles/PMC10580056/ /pubmed/37817491 http://dx.doi.org/10.5423/PPJ.OA.01.2023.0018 Text en © The Korean Society of Plant Pathology https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0 (https://creativecommons.org/licenses/by-nc/4.0/) ) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Pengproh, Rattana Thanyasiriwat, Thanwanit Sangdee, Kusavadee Saengprajak, Juthaporn Kawicha, Praphat Sangdee, Aphidech Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato |
title | Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato |
title_full | Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato |
title_fullStr | Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato |
title_full_unstemmed | Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato |
title_short | Evaluation and Genome Mining of Bacillus stercoris Isolate B.PNR1 as Potential Agent for Fusarium Wilt Control and Growth Promotion of Tomato |
title_sort | evaluation and genome mining of bacillus stercoris isolate b.pnr1 as potential agent for fusarium wilt control and growth promotion of tomato |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580056/ https://www.ncbi.nlm.nih.gov/pubmed/37817491 http://dx.doi.org/10.5423/PPJ.OA.01.2023.0018 |
work_keys_str_mv | AT pengprohrattana evaluationandgenomeminingofbacillusstercorisisolatebpnr1aspotentialagentforfusariumwiltcontrolandgrowthpromotionoftomato AT thanyasiriwatthanwanit evaluationandgenomeminingofbacillusstercorisisolatebpnr1aspotentialagentforfusariumwiltcontrolandgrowthpromotionoftomato AT sangdeekusavadee evaluationandgenomeminingofbacillusstercorisisolatebpnr1aspotentialagentforfusariumwiltcontrolandgrowthpromotionoftomato AT saengprajakjuthaporn evaluationandgenomeminingofbacillusstercorisisolatebpnr1aspotentialagentforfusariumwiltcontrolandgrowthpromotionoftomato AT kawichapraphat evaluationandgenomeminingofbacillusstercorisisolatebpnr1aspotentialagentforfusariumwiltcontrolandgrowthpromotionoftomato AT sangdeeaphidech evaluationandgenomeminingofbacillusstercorisisolatebpnr1aspotentialagentforfusariumwiltcontrolandgrowthpromotionoftomato |