Cargando…
After Bone Marrow Transplantation, the Cell-Intrinsic Th2 Pathway Promotes Recipient T Lymphocyte Survival and Regulates Graft-versus-Host Disease
Recipient T cells can aggravate or regulate lethal and devastating graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In this context, we have shown before that intestinal immune conditioning with helminths is associated with survival of recipient T cells and Th2 pathway–depen...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580113/ https://www.ncbi.nlm.nih.gov/pubmed/37294277 http://dx.doi.org/10.4049/immunohorizons.2300021 |
Sumario: | Recipient T cells can aggravate or regulate lethal and devastating graft-versus-host disease (GVHD) after bone marrow transplantation (BMT). In this context, we have shown before that intestinal immune conditioning with helminths is associated with survival of recipient T cells and Th2 pathway–dependent regulation of GVHD. We investigated the mechanism of survival of recipient T cells and their contribution to GVHD pathogenesis in this helminth infection and BMT model after myeloablative preparation with total body irradiation in mice. Our results indicate that the helminth-induced Th2 pathway directly promotes the survival of recipient T cells after total body irradiation. Th2 cells also directly stimulate recipient T cells to produce TGF-β, which is required to regulate donor T cell–mediated immune attack of GVHD and can thereby contribute to recipient T cell survival after BMT. Moreover, we show that recipient T cells, conditioned to produce Th2 cytokines and TGF-β after helminth infection, are fundamentally necessary for GVHD regulation. Taken together, reprogrammed or immune-conditioned recipient T cells after helminth infection are crucial elements of Th2- and TGF-β–dependent regulation of GVHD after BMT, and their survival is dependent on cell-intrinsic Th2 signaling. |
---|