Cargando…
Monolithic Two-Terminal Perovskite/Perovskite/Silicon Triple-Junction Solar Cells with Open Circuit Voltage >2.8 V
[Image: see text] The efficiency of perovskite/silicon tandem solar cells has exceeded the previous record for III–V-based dual-junction solar cells. This shows the high potential of perovskite solar cells in multi-junction applications. Perovskite/perovskite/silicon triple-junction solar cells are...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580312/ https://www.ncbi.nlm.nih.gov/pubmed/37854048 http://dx.doi.org/10.1021/acsenergylett.3c01391 |
Sumario: | [Image: see text] The efficiency of perovskite/silicon tandem solar cells has exceeded the previous record for III–V-based dual-junction solar cells. This shows the high potential of perovskite solar cells in multi-junction applications. Perovskite/perovskite/silicon triple-junction solar cells are now the next step to achieve efficient and low-cost multi-junction solar cells with an efficiency potential even higher than that for dual-junction solar cells. Here we present a perovskite/perovskite/silicon triple-junction solar cell with an open circuit voltage of >2.8 V, which is the record value reported for this structure so far. This is achieved through employing a gas quenching method for deposition of the top perovskite layer as well as optimization of interlayers between perovskite subcells. Moreover, for the measurement of our triple-junction solar cells, precise measurement procedures are implemented to ensure the reliability and accuracy of the reported values. |
---|