Sampling for malaria molecular surveillance
Strategic use of Plasmodium falciparum genetic variation has great potential to inform public health actions for malaria control and elimination. Malaria molecular surveillance (MMS) begins with a strategy to identify and collect parasite samples, guided by public-health priorities. In this review w...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580323/ https://www.ncbi.nlm.nih.gov/pubmed/37730525 http://dx.doi.org/10.1016/j.pt.2023.08.007 |
Sumario: | Strategic use of Plasmodium falciparum genetic variation has great potential to inform public health actions for malaria control and elimination. Malaria molecular surveillance (MMS) begins with a strategy to identify and collect parasite samples, guided by public-health priorities. In this review we discuss sampling design practices for MMS and point out epidemiological, biological, and statistical factors that need to be considered. We present examples for different use cases, including detecting emergence and spread of rare variants, establishing transmission sources and inferring changes in malaria transmission intensity. This review will potentially guide the collection of samples and data, serve as a starting point for further methodological innovation, and enhance utilization of MMS to support malaria elimination. |
---|